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Mixed-effects models are commonly used to model longitudinal data as they can 

appropriately account for within and between subject sources of variability. Univariate 

mixed effect modeling strategies are well developed for a single outcome (response) 

variable that may be continuous (e.g. Gaussian) or categorical (e.g. binary, Poisson) in 

nature. Only recently have extensions been discussed for jointly modeling multiple 

outcome variables measures longitudinally. Many diseases processes are a function of 

several factors that are correlated. For example, the metabolic syndrome, a constellation of 

cardiovascular risk factors associated with an increased risk of cardiovascular disease and 

type 2 diabetes, is often defined as having three of the following: elevated blood pressure, 

high waist circumference, elevated glucose, elevated triglycerides, and decreased HDL. 

Clearly these multiple measures within a subject are not independent. A model that could 

jointly model two or more of these risk factors and appropriately account for between 

subjects sources of variability as well as within subject sources of variability due to the 

longitudinal and multivariate nature of the data would be more useful than several 

univariate models. In fact, the univariate mixed-effects model can be extended in a 

relatively straightforward fashion to define a multivariate mixed-effects model for 

longitudinal data by appropriately defining the variance-covariance structure for the 

random-effects. Existing software such as the PROC MIXED in SAS can be used to fit the 

multivariate mixed-effects model. 
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 The Fels Longitudinal Study data were used to illustrate both univariate and 

multivariate mixed-effects modeling strategies. Specifically, jointly modeled longitudinal 

measures of systolic (SBP) and diastolic (DBP) blood pressure during childhood (ages two 

to eighteen) were compared between participants who were diagnosed with at least three of 

the metabolic syndrome risk factors in adulthood (ages thirty to fifty-five) and those who 

were never diagnosed with any risk factors. By identifying differences in risk factors, such 

as blood pressure, early in childhood between those who go on to develop the metabolic 

syndrome in adulthood and those who do not, earlier interventions could be used to prevent 

the development cardiovascular disease and type 2 diabetes. 

 As demonstrated by these analyses, the multivariate model is able to not only 

answer the same questions addressed as the univariate model, it is also able to answer 

additional important questions about the association in the evolutions of the responses as 

well as the evolution of the associations. Furthermore, the additional information gained by 

incorporating information about the correlations between the responses was able to reduce 

the variability (standard errors) in both the fixed-effects estimates (e.g. differences in 

groups, effects of covariates) as well as the random-effects estimates (e.g. variability). 
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1 Introduction 

1.1. Introduction 

Multivariate longitudinal data occur when multiple measures are collected on the same 

individual repeatedly over time. For example, systolic blood pressure (SBP) and diastolic 

blood pressure (DBP) measures are collected simultaneously from a patient every time 

they visit the doctor’s office. Together these measurements give the physician an 

indication of the health and functioning of an individual’s circulatory system at a given 

time point, and longitudinal measures of SBP and DBP can alert the physician to changes 

in the health of an individual. SBP is the pressure while the heart contracts to pump blood 

to the body, while DBP is the pressure when the heart relaxes between beats. Measures of 

SBP and DBP are highly related and changes in either often affect changes in the other. A 

great deal of interest then lies in how the evolution of SBP is related to the evolution of 

DBP, as well as how the association changes, or evolves, over time. A modeling 

approach that jointly models longitudinal measures of SBP and DBP over time can lend 

insight into these questions. 
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1.2. Modeling Longitudinal Data 

Longitudinal data are a series of measurements of the same event taken from the same 

individual repeatedly over time. The most unique characteristic of longitudinal data is the 

ability to directly study change. The primary goal of most longitudinal studies is to 

characterize the change in response over time and the factors that influence this change. 

Great strides have been made over the past three decades involving development of 

statistical methodology for longitudinal data analysis. Longitudinal data require special 

methodology because the series of data from one subject are likely intercorrelated, and 

this correlation must be taken into account to draw valid statistical inferences. In fact, 

longitudinal data usually exhibit a positive correlation, with the strength of the 

association decreasing as a function of time separation (i.e. observations further apart as 

less correlated than those closer together). The next section will cover some basic 

notation. 

 

1.2.1 Some Notation 

Focusing briefly on some specific points of notation, let Yij  represent a response variable 

and let ijx  be a 1p×  vector of explanatory variables observed at time tij , for 

observations 1,...,i n j=  on subject 1,...,j S= . The mean and variance of Yij  are 

represented by ( )E Yij ijμ=  and ( )Var Y vij ij= , respectively. The set of repeated 
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outcomes for the jth subject are collected into an 1n j ×  vector, ( )...1 2Y Y Yj j j n jj=Y , 

with mean ( )E j j=Y μ  and n nj j×  variance-covariance matrix ( )Var j j=Y V , where 

the ii′  element of jV  is the covariance between and ,Y Yij i j′  denoted by 

( )Cov , .Y Y vij i j ii j=′ ′  The n nj j×  correlation matrix of jY  is denoted by jR . The 

responses for all subjects are then collected into the N N× vector 

( )... ,  with .1 2
1

S
N nS j

j
= =

=
∑Y Y Y Y  

 Most longitudinal analyses are based on a regression model such as the usual 

linear model, 

...1 1 2 2
,

Y x x xij ij ij p ijp ij

ij ij

β β β ε

ε

= + + + +

= +′x β
 

Where, ( )...1 2 pβ β β=β  is a 1p× vector of unknown regression coefficients and ijε  is 

a zero-mean random variable representing the deviation of the response from the model 

prediction .ij′x β  Typically, 11xij =  for all j and i, while 1β  is the intercept term in the 

linear model. 

 In matrix notation, the regression equation for the jth subject takes the form 

,j j j= +Y X β ε  

 where jX  is an n pj ×  matrix with ijx
 
in the ith row and ( )... .1 2j j j n jjε ε ε=ε
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The following section will cover some general approaches to handling longitudinal data.
 

 

1.2.2 General Approaches 

Researchers have been collecting longitudinal data for centuries, and have likely been 

spending an equal amount of time deriving methods for the analysis of such data. An in 

depth historical perspective of the methods for analyzing longitudinal data can be found 

in Fitzmaurice (2008) and Ware and Liang (1996). Researchers can use several general 

approaches to model longitudinal data, as described by Diggle et al. (2002), Fahrmeir and 

Tutz (1994, 2001), and Molenberghs and Verbeke (2006); these are summarized below.  

 A simple and sometimes effective strategy is to reduce the series of repeated 

measures to one (or two) summary measure, and then analyze each summary measure as 

a function of the covariates, .jx  This “two-stage”, or “derived variable”, analysis dates 

back to the early contributions of growth curve analysis by Wishart (1938), Box (1950), 

and Rao (1958) and agricultural experiments by Roswell and Walters (1976). The method 

is applicable only when the covariates are time-invariant (i.e. ij j=x x  for all i and j), 

since the summary value can only be regressed on .jx  However, this approach is less 

useful if important explanatory variables change over time. While this approach has 

certain appeal due to its simplicity, it has a number of additional drawbacks. Clearly, 

there is a considerable loss of useful information. Also, subjects with different profiles 

can produce the same summary measures. Finally, some summary measures that have 
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been proposed are not well defined where there are missing data or irregularly spaced 

repeated measures. Rather than reduce the series of data to summary measures, there are 

three other modeling strategies that can be employed to model the individual Yij  as a 

function of ijx . 

 The first strategy considered models the marginal mean. The term marginal is 

used here to indicate that the model for the mean response at each occasion depends only 

on the covariates of interest and not on random effects or previous responses. A marginal 

model can be specified using the framework of generalized linear models (GLM) (Nedler 

and Wedderburn, 1972). The model is typically specified in three parts. First, the mean of 

each response, ( )E |Yij ij ijμ=X , is assumed to depend on the covariates through a 

known link function, ( )1h ij ijμ− = ′X β  (for example, the logit link for binary responses 

or the log link for Poisson responses). Second, the variance of each ,Yij  given the 

covariates, is assumed to depend on the mean according to ( ) ( )Var | ,Y vij ij ijφ μ=X  

where ( )v ijμ  is a known variance function and φ  is a scale parameter that may be 

known or may need to be estimated. Third, and lastly, the conditional within-subject 

association among the vector of repeated responses, given the covariates, is assumed to 

be a function of an additional set of association parameters. This approach has the 

advantage of separately modeling the mean and covariance. The separation of the model 

for the mean response from the model for the within-subject associations ensures that the 
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marginal model regression coefficients have interpretations that do not depend on the 

assumptions made about the within-subject associations. Furthermore, valid inference 

about β  can often still be made even when an incorrect value for V  is assumed. There 

are limitations of the marginal model that are worth mentioning. While the marginal 

model can handle missing data, there are only a limited number of variance-covariance 

structures that can handle unbalanced data (i.e. when the data collection time points vary 

between subjects.) Also, the marginal model is unable to distinguish between within-

subject and between-subject variability. Liang and Zeger (1986) developed generalized 

estimating equations (GEE) to estimate consistent estimators or the regression parameters 

in a marginal model, and their variances, under relatively mild conditions. While the 

semi-parametric GEE methods have been the dominant methods for estimation of 

marginal models, they are certainly not the only approach. 

 A second strategy which may be implemented for modeling longitudinal data is a 

mixed-effects, or random-effects, modeling approach (Laird and Ware, 1982). Here, the 

mean response depends not only on the covariates of interest, but also on a vector of 

random effects. The idea with this model is that some subset of the regression parameters 

vary randomly from one individual to the next, thereby accounting for sources of natural 

heterogeneity in the population. Each subject is assumed to have their own subject-

specific mean response trajectory over time and a subset of the regression parameters are 

now regarded as being random. The linear mixed-effects model fits the mean response as 

a combination of population characteristics (fixed-effects) assumed to be shared by all 
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individuals and subject-specific effects (random-effects) that are unique to a particular 

individual. By including random-effects in the model, linear mixed-effects models are 

able to explicitly distinguish between within-subject and between-subject sources of 

variation. With a linear mixed-effects model it is not only possible to estimate parameters 

that describe how the mean responses change over time, but it is also possible to predict 

how an individual’s response trajectories change over time. Mixed-effects models are 

highly attractive due to their ability to handle missing and unbalanced data reasonably 

well. 

 A third approach for modeling longitudinal data, is often referred to as the 

conditional models method. This method works by modeling the mean and the time 

dependence simultaneously by conditioning an outcome on other outcomes or on a subset 

of other outcomes. The most common example of a conditional model is the classical 

log-linear model (Agresti, 2002). A particular case of conditional models is known as the 

transition model. Transition models are considered conditional in the sense that they 

model the conditional distribution of the response at any point in time, given the previous 

responses and the covariates. The dependence in the repeated measures is thought to be 

due to the past values influence of the response the present observation. Well known 

transition models are Markov type models. There are many examples of the use of 

Markov chains to model equally spaced discrete longitudinal data with a finite number of 

categories (Anderson and Goodman, 1957; Cox, 1958; Billingsley, 1961). Other 

discussions of transition models applied to longitudinal data can be found in Cox (1972), 
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Korn and Whittemore (1979), Zeger et al. (1985), and Ware et al. (1988). While 

transition models have a long history of use with longitudinal data, their application has 

been limited. In general, transition models have, for the most part, only been developed 

for equally spaced repeated measures, and are more difficult to apply with missing data, 

mistimed measurements, and non-equidistant intervals between time points. Another 

limitation is that estimation of the regression parameters can be highly affected by the 

assumptions regarding time dependence. Furthermore, the effects of the covariates may 

be diminished when conditioning on past responses.  

 With all three approaches, both the dependence of the responses on the 

explanatory variables and the autocorrelations among the responses are modeled. There 

are at least three serious consequences to ignoring inherent correlations in longitudinal 

data (Diggle et al. 2002). First, incorrect inferences about the regression coefficients, ,β  

can be made. Second, estimates of β  may be inefficient (i.e. less precise than possible). 

Third, there is suboptimal protection against biases caused by missing data. 

 

1.2.3 Modeling Different Types of Longitudinal Data 

An important characteristic of longitudinal data is the type of outcome being measured. 

Methods for continuous, normally distributed data form the most developed and 

advanced body of research spanning the literature from the early works of British 

astronomer Airy (1861) through the landmark paper on linear mixed-effects models by 

Laird and Ware (1982). Unfortunately, researchers are often confronted with different 
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types of data such as binary, multinomial, or count. One view researchers take, supported 

by large sample results, is that normal theory should be used as much as possible, even 

with regards to non-normal data such as ordinal scores and counts (Fitzmaurice, et al., 

2009). A more predominant view is that each type of outcome should be analyzed using 

methods that exploit the nature of the data.  

 The GLM described earlier for the marginal models is able to handle any type of 

response in the exponential family (i.e. Gaussian, binary, Poisson) and has been extended 

to allow for random-effects. In the same sense that the linear model defined in section 

1.2.1 is a special case of the GLM, the linear mixed-effects model is a special case of the 

generalized linear mixed-effects model (GLMM). In this case, given a vector of random-

effects, the responses are assumed to be conditionally independent and to have 

distributions from the exponential family. The conditional mean depends on both fixed-

effects and random-effects for some known link function. The conditional variance is 

assumed to depend on the conditional mean. Finally, the random-effects are assumed to 

be independent of the covariates and to have a zero-mean multivariate normal 

distribution. Work by Ashford and Sowden (1970), Pierce and Sands (1975), and Korn 

and Whittemore (1979) laid the framework for GLMM’s with much of work that 

followed focusing on the issues of estimation. It is worth noting, however, that the 

extensions to GLMM’s can have important implications for the interpretation of the 

regression coefficients. In GLMM’s, the regression coefficients have subject-specific 

interpretations and represent the effects of the covariates on changes in an individual’s 
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(possibly transformed) mean response per unit change in the covariate (Molenberghs and 

Verbeke, 2006; Fitzmaurice et al., 2009). With marginal models, on the other hand, the 

regression coefficients have population based interpretations and represent the effects of 

covariates on changes in the population’s (possibly transformed) mean response per unit 

change in the covariate. In the special case of the linear model, where an identity link 

function is assumed, the fixed-effects in the model for the conditional mean also happen 

to have interpretations in terMs of the population means.  

 The GLM has also been extended to handle most types of conditional transition 

models and many of the previously cited literature deals with non-Gaussian data. An 

extensive discussion on the extensions can be found in Molenberghs and Verbeke part III 

(2006). 

 

1.3. Modeling Joint Longitudinal Data 

When there are multiple outcomes measured repeatedly over time, the most basic 

approach would be to model each longitudinal outcome independently. However, this 

does not account for the multivariate nature of the data. As compared to traditional 

univariate approaches, methods for analyzing multivariate longitudinal data can be 

challenging for several reasons. For one, the variability for each response is likely to be 

different. Also, in addition to the correlation due to repeated measures over time, there is 

likely to be correlations between the outcomes. The primary objective of joint modeling 

is to provide a framework where questions of scientific interest pertaining to relationships 
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among and between the multiple outcomes and other factors (i.e. treatment, dose, or 

covariates) may be formalized. In order for there to be valid inference, the joint models 

must be able to appropriately account for correlations within and between each outcome. 

General approaches to what has been discussed thus far, will be cover next. 

 

1.3.1 General Approaches 

Consider modeling two outcomes and ,1 2Y Y  where one, or both, may have been 

collected longitudinally. Here, attention will be restricted to two outcomes, noting that 

extensions for more than two outcomes are relatively straightforward. There are several 

methods available in the literature for jointly modeling longitudinal data. Four of these 

are briefly discussed below, while more thorough descriptions can be found in recent 

texts by Fitzmaurice et al. (2009) and Molenberghs and Verbeke (2006). 

 One strategy is referred to as the multivariate marginal models (Galecki, 1994; 

Molenberghs and Verbeke, 2006). The idea here is to directly specify the joint density 

( ),1 2f y y  of ( ), .1 2Y Y  The model includes the necessary assumptions about the 

marginal association among the longitudinal measurements within each vector 

 and ,1 2Y Y  as well as assumptions of the nature of the associations between elements of 

 and .1 2Y Y  This may become difficult if and 1 2Y Y  are of different types (e.g. 

continuous and binary, or continuous and time-to-event) or in the case of highly 

unbalanced data. Furthermore, extensions beyond two outcomes are especially 
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challenging since assumptions about larger, more complex association structures must be 

made. The primary attraction to this model is the ability to directly make inferences about 

the marginal characteristics of the outcomes (e.g. average evolutions). 

 A second strategy is the conditional model described in section 1.2.2. Here, direct 

specification of a joint distribution for ( ),1 2Y Y  is avoided by factorizing the density into 

a product of a marginal and a conditional density. That is, 

( ) ( ) ( ) ( ) ( ), | | .1 2 1 2 2 2 1 1f y y f y y f y f y y f y= =  

This reduces the problem to specifications of the models for each of the outcomes 

separately, with a marginally specified model for one outcome, and a conditionally 

specified model for the other. Careful attention must be given to the choice of which 

outcome is modeled marginally and which is modeled conditionally. For example, it may 

be plausible that one plays the role of a time-dependent covariate. Different choices can 

lead to very different, and perhaps opposite, results and conclusions. Another limitation 

with this methodology is that it does not directly lead to marginal inferences. Finally, 

when both outcomes are highly correlated and thought to be manifestations of a common 

underlying treatment effect, conditioning on one will attenuate the treatment effect of the 

other. Therefore, conditional models are not the preferred approach when there are more 

than two outcomes since there may be many more possible factorizations. Examples of 

conditional models used to jointly model a continuous and binary outcome can be found 

in Tate (1954), Olkin and Tate (1961), Little and Schluchter (1985), Krzanowski (1988), 

and Cox and Wermuth (1992, 1994). 
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 A third strategy is the shared-parameters modeling approach. As described earlier, 

random-effects can be introduced into a model to account for associations in the 

longitudinal measures. This same idea can be extended to account for additional 

associations in the multivariate longitudinal data. For the shared-parameters model, 

define β  as a vector of random-effects, common to the model for 1Y  and the model for 

2Y , and assume independences of both outcomes, conditionally on β . The joint density 

of ( ),1 2Y Y  is then obtained from  

( ) ( ) ( ) ( ) ( ) ( ), , | | | ,1 2 1 2 1 2f y y f y y f d f y f y f d= =∫ ∫β β β β β β β  

where ( )f β  denotes the marginal density of the random effects. In this formulation, the 

random-effects, ,β  is a “shared-parameter” that induces a correlation between  and 1 2Y Y  

through their joint dependence of .β  That and 1 2Y Y  are conditionally independent 

given the random-effects, ,β  is interpreted as a belief that a common set of underlying 

characteristics of the individual governs both outcome processes. An advantage of this 

type of model is that  and 1 2Y Y  do not need to be of the same type (e.g. 1Y  could be 

continuous responses and 2Y  could be binary responses). Another advantage is that the 

parameters in the joint shared-parameters model have the same interpretations as they do 

in each of the corresponding “univariate” models. In addition, extensions for more than 

two outcomes are straightforward and because dimensionality in the above integration 

does not increase, computational intensity does not increase. This type of model has been 
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used repeatedly in the literature to jointly model a longitudinal outcome and a time-to-

event outcome (Degruttola and Tu, 1994; Tsiatis et al., 1995; Faucett and Thomas, 1996; 

Tsiatis and Davidian, 2004). The main disadvantage of the shared-parameters approach is 

that it implies very strong assumptions about the association between the outcomes being 

modeled. Specifically, the correlation between pairs of measurements from different 

outcomes must be equal to the product of the correlation between measurements from the 

first outcome and measurements from the second outcome (Fitzmaurice et al., 2009). 

That is, 

{ } { } { }Corr ( ), ( ) Corr ( ), ( ) Corr ( ), ( ) .1 2 1 1 2 2Y s Y t Y s Y t Y s Y t=  

As such, the shared-parameter model may not accurately represent the association 

structure of the data. This motivated the need for more flexible correlation patterns, at the 

expense of model complexity. 

 A fourth, and final, approach is the random-effects model method. The 

assumptions in the correlation structure in the shared parameters model could be relaxed 

by allowing the models for  and 1 2Y Y  to depend on separate vectors of the random-

effects parameters,  and ,1 2β β  which are theMselves correlated. Under these 

assumptions, 

{ } { } { }Corr ( ), ( ) Corr ( ), ( ) Corr ( ), ( ) .1 2 1 1 2 2Y s Y t Y s Y t Y s Y t≤  

Random-effects models can easily be extended to model more than two outcomes, 

however, the dimensionality of the vector of random-effects increases as the number of 
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outcomes increases, leading to computational difficulties. Pair-wise modeling approaches 

may be a more appropriate means to side-step the issue of dimensionality (Verbeke et al., 

2006). 

 

1.3.2 Choosing Between the Univariate Models and a Multivariate Model 

The availability of the joint model does not necessarily mean that a researcher must use 

one. It is possible that several univariate models will suffice to answer the research 

question, or questions, at hand. In other cases, it is necessary to combine all of the 

responses into a single model in order to draw specific inferences. Sometimes, the 

association structure may be of direct importance. For example, a researcher may be 

interested in how the changes in one response are associated with changes in another 

response (the association in the evolution). There may also be interest in how the 

association between the responses changes or evolves over time (the evolution in the 

associations). Analyses pertaining to these questions have been described in Fieuws and 

Verbeke (2004, 2006) in bivariate and multivariate settings. A joint model would also be 

necessary if a researcher were interested in testing fixed-effects referring to a set of 

outcomes simultaneously. For example, the definition of success of an intervention may 

depend on more than one response variable. Joint models may also have addition benefits 

for predication purposes. Furthermore, the additional information from multiple 

outcomes may better discriminate between groups (Fieuws et al., 2007). When outcomes 

share parameters, a joint model can lead to a gain in efficiency. Even when all parameters 
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are outcome-specific, there is a potential gain in efficiency when there are missing data. 

For example, one may be able to assume the data are missing at random in a multivariate 

model, but not be able to do so when looking at each outcome separately. 

 

1.4. The Metabolic Syndrome 

The primary focus of this thesis is to jointly model two continuous outcomes as a 

function of fixed-effects and random-effects. More specifically, there is interest in 

modeling longitudinal measures of childhood SBP and DBP, as a function of birth weight 

and physical maturation, to determine if there exist differences in the childhood profiles 

between those who go on to develop the metabolic syndrome later in life and those who 

never develop any of the risk factors associated with the metabolic syndrome. The 

following sections give a definition of the metabolic syndrome and describe the  

measurement procedures for the risk factors associated with this syndrome, along with a 

more formal definition of the purpose of this thesis. 

 

1.4.1 Diagnosis of the Metabolic Syndrome 

The metabolic syndrome, which is a constellation of cardiovascular risk factors, has also 

been referred to as syndrome X (Raven, 1993), the “deadly quartet” (Kaplan, 1989), 

insulin resistance syndrome (Stern., 1994), and hypertriglyceride waist (Lemieux, et al., 

2000), and has been defined by several major organizations over the years. The term, 

metabolic syndrome, is most commonly used in the cardiovascular field. The metabolic 
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syndrome has been receiving increased attention over the past years in part due to its 

promotion of atherosclerotic cardiovascular disease (ASCVD). The metabolic syndrome 

is generally classified as a “constellation of interrelated risk factors of metabolic origin--

metabolic risk factors--that appear to directly promote the development of atherosclerotic 

cardiovascular disease” (Grundy, et al., 2005). Furthermore, it has been proposed that not 

only is the metabolic syndrome related to ASCVD, but the risk for ASCVD associated 

with the metabolic syndrome risk factors is more than the sum of its parts (Grundy, 

2006). There is also a relationship between the metabolic syndrome and an increased risk 

of developing type 2 diabetes mellitus (Grundy, et al., 2005). Both ASCVD and type 2 

diabetes mellitus are growing health concerns that plague numerous Americans as the 

prevalence of obesity grows in the United States. The Center for Disease Control and 

Prevention defines obesity for an individual as that person having a body mass index 

(BMI) of thirty or greater (note, BMI is calculated from a person’s weight and height and 

provides a reasonable indicator of body fatness and weight). In 2008, the CDC 

determined that forty-nine states in America had a prevalence of obesity of more than 

20%. These numbers also appear to be on the rise. The metabolic syndrome takes into 

account risk factors other than just BMI, making it a potential barometer of future 

medical comorbities related to ASCVD and type 2 diabetes mellitus. 

 Given the hefty suMs of money spent each year on health probleMs associated 

with the metabolic syndrome, ASCVD, and type 2 diabetes mellitus, it is of great interest 

to investigate methods for the early prediction for the metabolic syndrome. Not only is 
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obesity on the rise amongst the general U.S. population, it is also on the rise amongst 

children. According to a July report by the National Center for Health Statistics, 15% of 

children ages six to eighteen were overweight in 2000, this percentage is up from just 6% 

in 1980. Given these alarming numbers regarding the prevalence of obesity in children, it 

is desirable to investigate a predictive model that would be capable of identifying 

children who are at increased risk of developing the metabolic syndrome as adults. Early 

detection is can be important in combating most health related probleMs an individual 

may develop. Therefore, identifying those between the ages of two and eighteen who 

may be at increased risk to develop the metabolic syndrome as adults is of significant 

interest in the early detection and prevention of cardiovascular disease and type 2 

diabetes. 

 Though, many proposals have been made in the past decade to best define what 

set of criteria determines if an individual has the metabolic syndrome, only one will be 

considered for the purposes of this analysis; the National Cholesterol Education Program 

(NCEP) Adult Treatment Panel III (ATP III) criteria. Historically, the two underlying risk 

factors that appear to be most serious are abdominal obesity (Lemieux et al., 2000) and 

insulin resistance (Park et al., 2003). Many other possible associated factors have been 

considered over the years including physical inactivity (Gustat et al., 2002), aging (Ford 

et al., 2002), and hormonal imbalance (Apridonidze, et al, 2004). 

 Despite the numerous definitions proposed over the years since the metabolic 

syndrome was first proposed as a medical diagnosis, the definition which will be 
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considered for the purposes of this thesis is that proposed in 2001 by the NCEP ATP III. 

This was the first proposed definition that did not specifically required documentation of 

an elevated insulin resistance, noting that direct measures of insulin resistance are 

laborious and not well standardized (Grundy et al. 2005). Since the ATP III criteria for 

the metabolic syndrome removed the requirement of insulin resistance, there was now no 

single factor necessary for diagnosis.  Instead, five risk factors are considered under the 

ATP III criteria, they are as follows: elevated waist circumference, reduced HDL-c, 

elevated serum glucose, elevated triglycerides, and elevated blood pressure. The presence 

of at least three out of the aforementioned five risk factors is the basis for diagnosing the 

metabolic syndrome under the ATP III proposal. The ATP III criteria for the metabolic 

syndrome will be used given that it is the most simple to use in a clinical setting and also 

has the benefit of not emphasizing a single risk factor. So, in summary, the metabolic 

syndrome shall be defined here as having any three of the five risk factors in accordance 

with the ATP III criteria.  

 For each risk factor outlined by the ATP III criteria, there is a categorical cut 

point, for certain risk factors these are the same for males and females, for other risk 

factors the cut points are different. If an individual falls above (or below in the case of 

HDL-c) this cut point, they are considered to have that particular risk factor. These cut 

points are laid out in Table 1, which is followed by a more detailed definition of each risk 

factor. 
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Table 1: ATP III Criteria Categorical Cut Points for the Metabolic Syndrome 

 Male Female 
Waist Circumference 102≥ cm ( 40≥ inches) 88≥ cm ( 35≥ inches) 
HDL-c 40< mg/dL (1.03 mmol/L) 50< mg/dL(1.3 mmol/L) 
Serum Glucose 100≥ mg/dL 
Triglycerides 150≥ mg/dL (1.7 mmol/L) 
Systolic Blood Pressure 130≥ mm Hg 
Diastolic Blood Pressure 85≥ mm Hg 
Having either SBP or DBP ≥  the cut point, means having the blood pressure risk factor 

 First considering the risk factor of waist circumference, literature pertaining to the 

metabolic syndrome gives the following recommendation for waist measurement: 

“…locate top of right iliac crest. Place a measuring tape in a horizontal plane around the 

abdomen at level of iliac crest.” (Grundy et al., 2005). The second metabolic syndrome 

risk factor, fasting serum glucose, is measured by collecting a serum sample for 

measuring glucose after an individual has abstained from food for a set period of time. 

Fasting triglycerides are measured using a simple standardized blood test know as a 

lipoprotein panel; which is used to determine an individual’s triglyceride levels as well as 

their cholesterol levels. From the lipoprotein panel HDL-c, the “good cholesterol”, which 

carries cholesterol from the body’s tissues to the liver, and can protect against heart 

attack and stroke, is measured (recall, HDL-c is the only metabolic syndrome risk factor 

with a minimum categorical cut point). Finally, blood pressure, determined by measures 

of SBP and DBP, make up the fifth metabolic syndrome risk factor. The systolic blood 

pressure measurement is a measure of the peak pressure in the arteries, while the diastolic 
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blood pressure is a measurement of the minimum pressure in the arteries. One specific 

instrument used to measure blood pressure is  a standard mercury sphygmomanometer. 

 

1.5. Jointly Modeling Risk Factors of the Metabolic Syndrome over Time 

Now that both the metabolic syndrome and the methodology for analyzing joint 

longitudinal data have been introduced, the statistical and biological questions of interest 

can be better described. It is of interest to see if those individuals who develop the 

metabolic syndrome in adulthood and those who develop no risk factors in adulthood, 

have significantly different SBP and DBP profiles during childhood. The question will be 

addressed separately for males and females. These models will adjust for both time-

invariant (e.g. sex and birth weight) and time-variant (physical maturation) covariates. 

Furthermore, it is of interest to consider both univariate mixed-effects models designed to 

handle each outcome measure individually and a single multivariate mixed-effects model 

with a multivariate outcome representation.  

 This analysis will probe the differences between multiple univariate models and a 

single multivariate model, allowing discussion between the pros and cons of both 

methods, as well what may be gained, or lost, using one versus the other. The metabolic 

syndrome is ideal for this type of analysis given it is inherently a syndrome comprised of 

multiple outcomes, lending itself to a multivariate mixed-effects model. 
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2 Methodology  

 

2.1. Introduction 

In this chapter, the methods for modeling longitudinal data with a univariate normal 

mixed-effects (random-effects) model are discussed, along with the methods for jointly 

modeling multivariate longitudinal data. For the purposes of this thesis, the terMs mixed-

effects and random-effects will be used interchangeably, and are considered to be the 

same. In section 2.2, the univariate normal random-effects model is introduced and 

defined, along with the notation which will be used henceforth. In section 2.3, a 

discussion of estimation in normal mixed-effects models is presented. The joint mixed-

effects model will be presented in section 2.4, with subsequent sections focusing on 

special cases of the G matrix, the association of the evolutions, and the evolution of the 

association. 
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2.2. Univariate Normal Mixed-Effects Model Definition 

The normal random-effects model introduced by Laird and Ware (1982) can be written as 

 ,= + +y Xα Zβ ε  (2.1) 

where 

 y is the 1N ×  vector of observed response values, 

 α  is the 1P ×  vector of fixed-effects parameters, 

 X is the N P× observed design matrix corresponding to the fixed-effects, 

 β  is the 1Q ×  vector of random-effects parameters, 

 Z is the N Q×  observed design matrix corresponding to the random-effects, and 

 ε  is the 1N ×  vector of residuals. 

A corresponding assumption of model (2.1) is, ~ ( , )NQβ 0 G ; that is β  has a Q-variate 

normal density with mean vector 0 and a variance-covariance matrix G. Furthermore, we 

assume β  is independent of the vector of residuals, ε , where ~ ( , )NNε 0 R ; that is ε  has 

an N-variate normal density with mean vector 0 and variance covariance matrix R. Given 

the assumptions listed above, y~ ( , )NN Xα V ; that is y has a N-variate normal density 

with mean vector Xα  and variance-covariance matrix V. For the above, note that 

[ ] [ ] [ ]Var Var Var= + =V = y Zβ ε ZGZ`+R .  
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2.3. Estimation in the Normal Random-Effects Model 

In this section, the methods used for estimation in the normal random-effects model, 

described above in section 2.2, are discussed.  Section 2.3.1, will cover the likelihood 

function and approaches to its maximization, more specifically the maximum likelihood 

method and the residual maximum likelihood method. The subsequent three sections will 

cover estimation of the fixed-effects parameters, random-effects parameters, and variance 

parameters. 

 

2.3.1 Methods of Estimation 

Suppose a random sample of N observations is obtained from a univariate normal 

random-effects model as defined in equation (2.1), then the likelihood of the model 

parameters, given the vector of N observations, is defined as  

 ( )
( ) ( )

( )( ) ( )

1 1exp
2 ,

1/2 1/22
L L

Nπ

⎧ ⎫−− − −⎨ ⎬
⎩ ⎭= =

Y Xα 'V Y Xα
α,γ;y

V
 (2.2) 

where α  is a vector of fixed-effects parameters and γ  is a vector containing the variance 

parameters. Given its simplicity in comparison to the likelihood function, the log of the 

likelihood function is generally used in practice. Its maximum value coincides with that 

of the likelihood function. The log-likelihood of the model parameters, is defined as 

 
( ) ( ) ( ) ( )

( ) ( )

1 1 1log 2 log
2 2 2

1 1log .
2

Nl l

K

π −= = − − − − −

−⎡ ⎤= − + − −⎢ ⎥⎣ ⎦

α,γ;y V Y Xα 'V Y Xα

V Y Xα 'V Y Xα
 (2.3) 
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where, ( )1 log 2
2

K N π= − , which is a constant that may be ignored in the maximization 

process. Now the values in the model parameters which maximize the log-likelihood may 

be determined. Estimates of the parameters for the model given in equation (2.1) are 

found by maximizing the log-likelihood given in equation (2.3) with respect to α  and γ . 

One such method that may be used to maximize the log-likelihood function is the 

maximum likelihood (ML) method. The ML method, first maximizes the log-likelihood 

with respect to the variance parameters, while treating the fixed-effects parameters, α , as 

constant. Upon determining the variance parameter estimates, the fixed-effects 

parameters are then determined by finding the values of α  which maximize the log-

likelihood, while treating the variance parameters as constant. It is important to note, the 

maximum likelihood approach may produce variance parameters that are biased 

downwards since they are based on the assumption that the fixed-effects parameters are 

known (Brown and Prescott, 2006). 

 Another method that may be used to maximize the log-likelihood function is the 

residual maximum likelihood (REML) method. Sometimes this method is referred to as 

the restricted maximum likelihood method. For this approach, the fixed-effects 

parameters, α , are eliminated from the log-likelihood equation, such that it will only be 

defined in terMs of the variance parameters. Then, a likelihood function based on the full 

residuals, ( )ˆ−y Xα , instead of the ordinary residuals, ( )ˆˆy - Xα - Zβ  needs to be 

determined. It may be noted that the full residuals are a linear combination of y and 
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furthermore ( )ˆ−y Xα  and α̂  are independent (Diggle et al., 1994). From these facts, the 

joint-likelihood for α  and the variance parameters, γ , may be express as a product of the 

likelihoods based on ( )ˆ ˆ and −y Xα α  

 ( ) ( ) ( )ˆ ˆ .L L L=γ,α;y γ;y - Xα α;α,γ  (2.4) 

Thus, 

 ( ) ( )
( )

ˆ .
ˆ

L
L

L
=

γ,α;y
γ;y - Xα

α;α, γ
 (2.5) 

From the above, and equation (2.2), 

 ( ) ( ) ( )11 1exp .
2

L ⎧ ⎫− −∝ − − −⎨ ⎬
⎩ ⎭

γ,α;y V y Xα 'V y Xα  (2.6) 

Furthermore, α̂ , has a multivariate normal distribution with mean and variance given by 

the maximum likelihood estimates discussed later in equations (2.11), and (2.12), 

respectively. Hence, 

 ( ) ( ) ( )
1 1-1 12ˆ ˆ ˆexp .

2
L ⎧ ⎫−∝ − −⎨ ⎬

⎩ ⎭
α;α, γ X'V X α α 'X'V X α α  (2.7) 

Taking the ratio of equations (2.6) and (2.7), yields the REML, defined as 

 ( ) ( ) ( )
1 1 11 12ˆ ˆ ˆexp .2

2
L

− ⎧ ⎫−− −∝ − − −⎨ ⎬
⎩ ⎭

γ;y - Xα X'V X V y Xα 'V y Xα  (2.8) 

Therefore, the REML log-likelihood is defined as 

 ( ) ( ) ( )
11 1 1ˆ ˆ ˆlog log log .

2
L K

−⎧ ⎫⎪ ⎪− −= − − + − −⎨ ⎬
⎪ ⎪⎩ ⎭

γ;y - Xα V X'V X y Xα 'V y Xα  (2.9) 
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Despite α̂  appearing in the REML log-likelihood in equation (2.9), it is present only as a 

function of the variance parameters. As with the maximum likelihood method, the 

variance parameters are now estimated by maximizing the REML log-likelihood given in 

equation (2.9), with regards to the variance parameters. Given the nature of the REML 

likelihood, and its treatment of the fixed-effects as parameters, rather than as constants, 

the resulting variance parameter estimates are unbiased. In the same fashion of the 

maximum likelihood method, values of α  are found by maximizing the REML log-

likelihood with regards to the fixed-effects parameters, while treating the variance 

parameters as fixed. 

 

2.3.2 Estimation of Fixed-Effects Parameters 

For both the maximum log-likelihood method and the REML log-likelihood methods the 

fixed effects solutions may be calculated by maximizing either likelihood by 

differentiating the log-likelihood with respect to α , and subsequently setting the resulting 

expression to zero. That is,  

 ( )1 .− − =X'V y Xα 0  (2.10) 

The solutions to this equation are the maximum likelihood estimates for the fixed-effects 

parameters: 

 ( ) 11 1ˆ .
−− −=α X'V X X'V y  (2.11) 

The variance of α̂  is given by, 



www.manaraa.com

    

28 

 

 

[ ] ( ) [ ] ( )
( ) ( )
( )

1 11 1 1 1ˆvar var

1 11 1 1 1

11 .

− −− − − −=

− −− − − −=

−−=

α X'V X X'V y V X X'V X

X'V X X'V VV X X'V X

X'V X

 (2.12) 

This expression assumes that V is known when in fact V is estimated. Thus there may be 

some downward bias in the variance of α̂ , although this is usually small (Brown and 

Prescott, 1999). 

  

2.3.3 Estimation of Random-Effects Parameters 

Recall,β , the 1Q× vector of random-effects, is assumed to follow a  Q-variate normal 

distribution with mean vector 0  and variance-covariance matrix G , ( ),NQ 0 G∼β . The 

specific values of the random-effects must be thought of as realizations of a sample from 

a distribution. Therefore their expected values are zero, by definition. However, it is 

possible to obtain predictions (“estimates”) of them. To obtain these estimates, a joint 

likelihood function in terMs of α , β , and γ  is defined. This is expressed by taking the 

product of the likelihoods for |y β  and β as 

 ( ) ( ) ( ), , ; , ; | ; .L L L=α β γ y α γ γ β γ βR G  (2.13) 

The likelihood of β  is written as 

 ( ) ( ) ( ) ( )
1 1; 2 exp .2 2

2

Q
L π ⎧ ⎫− −= −⎨ ⎬

⎩ ⎭
γ β G β 'G βG  (2.14) 
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The likelihood for |y β  is written as 

 ( ) ( ) ( )( )1 1 1, ; | exp .2
2

L ⎧ ⎫− −∝ − − − − −⎨ ⎬
⎩ ⎭

α γ y β R y Xα Zβ 'R y Xα ZβR  (2.15) 

Therefore, the joint likelihood for α , β , and γ  is defined as 

 ( ) ( ) ( )
1 1 1 1 1, , ; exp .2 2

2
L ⎧ ⎫− − − −⎡ ⎤∝ − − − − − +⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
α β γ y R G y Xα Zβ 'R y Xα Zβ β'G β (2.16) 

From equation (2.16) the corresponding log-likelihood is expressed as 

 ( ) { } ( ) ( ){ }1 1 1 1, , ; log log .
2 2

l − −∝ − + − − − − − +α β γ y R G y Xα Zβ 'R y Xα Zβ β'G β (2.17) 

To obtain the maximum likelihood solution for the random-effects parameter, β , the 

derivative of the log-likelihood, or REML log-likelihood, is taken with respect to β , and 

the subsequent expression is set to zero. That is, 

 

( ) ( )

( ) ( )

, , ; 1 1

1 1 .

l∂ − −= − − −
∂

− −= − − +

α β γ y
Z'R y Xα Zβ G β

β

Z'R y Xα Z'RZ G β
 (2.18) 

Setting the above expression to zero and using the fact that = +V ZGZ' R , 

yields the maximum likelihood solution for ˆ.β  
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( ) ( )

( ) ( ) ( )

( )( ) ( )

( )

( ) ( )

( )

( )

11 1 1ˆ

1 11 1 1

11 1 1

11 1

11 1 1 1

11 1

1 .

−− − −= + −

− −⎡ ⎤− − −= + −⎢ ⎥
⎢ ⎥⎣ ⎦

−− − −⎡ ⎤= + −⎢ ⎥⎣ ⎦
−− −⎡ ⎤= + −⎢ ⎥⎣ ⎦

−− − − −⎡ ⎤= − + −⎢ ⎥⎣ ⎦
−− −⎡ ⎤= −⎢ ⎥⎣ ⎦

−= −

β Z'R Z G Z'R y Xα

Z'R Z G RZ' y Xα

RZ' Z'R Z G y Xα

Z RZ' G y Xα

V R Z' G RZ' G y Xα

VZ' G y Xα

GZ'V y Xα

 (2.19) 

The variance of β̂  is given by 

 

[ ]

( )

( )

( ) ( )

( )

1 1ˆvar var

11 1 1 1var

11 1 1 1var

1 11 1 1 1 1 1

11 1

− −⎡ ⎤ = −⎣ ⎦
−⎡ ⎤− − − −= −⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤−⎛ ⎞− − − −= −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

− −⎡ ⎤ ⎡ ⎤− − − − − −= − −⎢ ⎥ ⎢ ⎥
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−⎡ − −= −

β GZ'V y Xα V ZG

GZ'V y X X'V X X'V y V ZG

GZ'V I X X'V X X'V y V ZG

GZ'V I X X'V X X'V V I V X X'V X X' V ZG

GZ' GZ'V X X'V X X' ( )
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11 1 1

11 1 1 1 .

−⎤ ⎡ ⎤− − −−⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

−− − − −= −

V ZG X X'V X X'V ZG

GZ'V GZ'V X X'V X X'V ZG

(2.20) 
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Once again, the variance of β̂  will tend to have a small downward bias since it is 

assumed that V is known (Brown and Prescott, 1999). 

 

2.3.4 Estimation of Variance Parameters 

The variance parameters are also obtained by maximizing the log-likelihood function. 

The derivatives of the log-likelihood functions with respect to the variance parameters, 

however, are nonlinear. Thus, an iterative approach, such as the Newton-Raphson 

algorithm, is often used to find the maximum likelihood solutions. Variance-covariance 

estimates of the variance parameters for any given structure can also be obtained by using 

large sample theory. These estimates are based on asymptotic theory and should be 

interpreted with caution. 

 

2.4. Multivariate Methods 

The mixed-model in equation (2.1) can be easily extended to include multiple response 

variables by further stacking the data and defining a specific variance-covariance 

structure for the random effects. For simplicity consider modeling two response variables 

( 1Y  and 2Y ) over time and incorporating random intercepts and slopes in order to model 

the correlations over time between responses.  
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2.5. Multivariate Normal Random-Effects Model Definition 

Let yijk  represent the ith observation, from the jth subject, for the kth response variable, 

where i = 1, …, n jk , j = 1, …, S, and k = 1, …, K. Also, define 
1

S
N nk jk

j
=

=
∑  and 

1

K
N Nk

k
=

=
∑ . The vector ...1 2y y yjk n jkjk jk jk

′⎡ ⎤= ⎢ ⎥⎣ ⎦
Y  then represents the n jk  

observations of the kth response variable from the jth subject and the vector 

[ ]...1 2k k k Sk ′=Y Y Y Y  represents the kN  observations for the kth response 

variable across all subjects. Finally, the vector [ ]...1 2 k ′=Y Y Y Y  represents the N 

observations across all response variables and subjects. 

 In the context of modeling two response variables, the linear mixed-effects 

models for each response variable for subject j taken at time t can be specified as 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 1 1

2 2 2 2 2

Y t t a b t tj j j j
Y t t a b t tj j j j

μ ε

μ ε

= + + +

= + + +
 (2.21) 

where ( )tkμ  refers to the average evolution (of the kth response over time) and is a  

function of the fixed effects. The subject specific random intercepts a jk  and slopes  

( )b tjk  describe how the subject specific profiles deviate from the average profile for the  

kth response.  The two response trajectories are joined together by assuming a joint  

distribution for the vector of random-effects, β , such as 
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( )

1

1
, ,

2

2

a j
b j

N
a j
b j

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

β 0 G∼  

where the variance-covariance matrix for the random effects, G, has the following 

structure: 

 

2
1 1 1 2 1 21
2

1 1 1 2 1 21 .
2

2 1 2 1 2 22
2

2 1 2 1 2 2 2

a b a a a ba

b a b a b bb

a a a b a ba

b a b b b a b

σ σ σ σ

σ σ σ σ

σ σ σ σ

σ σ σ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

G  (2.22) 

The error components for each response, which are independent of the random effects, 

can be taken to be correlated or uncorrelated ( 012σ = ), such that the error components 

are defined as;  

2
0 1211 , .
0 22 21 2

i N
i

σ σε
ε σ σ

⎛ ⎞⎡ ⎤
⎡ ⎤ ⎡ ⎤⎜ ⎟⎢ ⎥
⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦⎣ ⎦ ⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

∼  

Assuming 012σ =  implies that, conditional on the random-effects, both response 

trajectories are independent. The assumption of conditional independence could 

alternatively be relaxed and the random errors could be taken to be dependent by 

allowing for a nonzero covariance between the error components ( )0 .12σ ≠  
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2.5.1 Special Cases for the G Matrix 

Special case can now be obtained by making specific assumptions for the variance-

covariance matrix G. Two such specific variance-covariance structures are described in 

the following subsections, a complete independence structure and a shared-parameters 

structure. 

 

2.5.1.1 Complete Independence 

The two response variable could be taken to be completely independent at any point in 

time, thereby imposing the following structure for G: 

2 0 01 11
2 0 01 1 1 .

20 0 2 22
20 0 2 2 2

a ba

b a b

a ba

b a b

σ σ

σ σ

σ σ

σ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

G  

Within a response variable, the random intercept and slope induce within-subject 

correlations in the repeated measures over time, while assuming independence between 

subjects. Moreover, this model assumes that the two responses are completely 

independent. The results for the model would be identical, in theory, to fitting two 

separate random-effect models. 
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2.5.1.2 Shared-Parameters 

Now that a complete independence structure has been considered for the G matrix one 

may consider the other end of the spectrum where the two response variables could be 

taken to be completely dependent. In this case, the two responses essentially “share” the 

same set of random effect parameters (intercept and slope). When two parameters are 

completely dependent, the correlation between them is equal to one. This occurs when 

the covariance between the parameters is equal to the square root of the product of their 

respective variances. Most notation, however, define the model with a 2 1×  vector of 

random effects, such as 

( )
2

, ,  with .2
a j a abN
b j ba b

σ σ
β

σ σ

⎡ ⎤⎡ ⎤
⎢ ⎥= =⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

0 G G∼  

Clearly, the aforementioned structure imposes strong assumptions on the relationship 

between the two response variables. It is very unlikely that the two responses would 

exhibit complete dependence in the association between the random slopes and between 

the random intercepts. One advantage of this model, when the assumption is tenable, is 

that it drastically reduces the number of random effects that must be estimated when the 

number of response variables is large. For models with a large number of response 

variables, estimation would likely be impossible if the shared-parameters (or alternative 

approach) were not used. 
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2.5.2 Association of the Evolutions (AOE) 

One important question that may be addressed with a joint mixed-effects model is how 

the evolution of one response is associated with the evolution of another response 

(“association of the evolutions”). By definition, the correlation between the evolutions for 

the two random slopes is given by 

 ( )
( ) ( )

, ,1 2 1 2 .
2 21 2
1 2

Cov b b b brE
Var b Var b

b b

σ

σ σ
= =  (2.23). 

It may be noted that the above expression is produced using those values from the G 

matrix defined in equation (2.22). 

 

2.5.3 Evolution of the Association (EOA) 

A similar idea that may be investigated using a joint mixed effects model is how the 

association between the responses evolves over time (“evolution of the association”). 

Assuming uncorrelated errors, the marginal correlation between the two responses as a 

function of time is given by 

 

( )
( ) ( )( )

( )( ) ( )( )
,1 2

1 2

2
, , , ,1 2 1 2 2 1 1 2 .

2 2 2 2 2 2 2 2 2 22 2 2 2, ,1 21 1 2 21 1 2 2

Cov Y t Y tj j
r tM

Var Y t Var Y tj j

t t ta a a b a b b b

t t t ta b a ba b a b

σ σ σ σ

σ σ σ σ σ σ σ σ

=

+ + +
=

+ + + + + +

(2.24) 
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Assuming correlated errors, the marginal correlation between the two responses as a 

function of time is given by 

 

( )
( ) ( )( )

( )( ) ( )( )
,1 2

1 2

2
, , , , 121 2 1 2 2 1 1 2 .

2 2 2 2 2 2 2 2 2 22 2 2 2, ,1 21 1 2 21 1 2 2

Cov Y t Y tj j
r tM

Var Y t Var Y tj j

t t ta a a b a b b b

t t t ta b a ba b a b

σ σ σ σ σ

σ σ σ σ σ σ σ σ

=

+ + + +
=

+ + + + + +

(2.25) 

The delta method could be used to obtain 95% confidence bounds for ( )r tM  at any 

particular point in time.  

 Two observations can be made from equation (2.24). First, notice that when t = 0 

the marginal correlation reduces to 

( ) ,1 2 ,
2 2 2 2

1 21 2

a ar tM
a a

σ

σ σ σ σ
=

+ +
 

which is essentially the correlation between the two random intercepts. If fact, when the 

error components are small, the closer the marginal correlation at t = 0 approximates the 

correlation between the random intercepts. Also, as t increases ( )r tM converges to rE  

for the case with uncorrelated errors, and to 

( ) , 121 2 ,
2 2 2 2

1 21 2

a ar tM
a a

σ σ

σ σ σ σ

+
=

+ +
 



www.manaraa.com

    

38 

 

for the case of correlated errors, which indicates that the absolute value of the marginal 

correlation at t = 0 cannot be higher than the correlation between the random intercepts. It 

may also be noted that as t increases the marginal correlation converges to the correlation 

between the random slopes, while the variance-covariance parameters of the random 

effects determine the shape of the marginal correlation function (Fieuws, et al. 2004). 

 

2.6. Summary 

The univariate normal random-effects model was first defined and methods for 

estimation were discussed. The univariate definition was the extended to a more general 

definition for the multivariate normal random-effects model. Univariate models can 

essentially be joined together with a specific definition of the variance-covariance 

structure for the random-effects.  

 Various structures of the G matrix are imposed to allow for different assumptions 

of the random-effects. Both a complete independence approach and a shared-parameters 

approach were considered. Finally, the methodology for determining the association of 

the evolutions and the evolution of the association were discussed. Software packages 

such as PROC MIXED and PROC GLIMMIX in SAS could be used to implement 

multivariate longitudinal data analysis. In the following chapter, an application of the 

multivariate mixed-model will be demonstrated using data from the Fels Longitudinal 

Study. 
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3 Data Analysis 

3.1. Introduction 

The methods for univariate and multivariate longitudinal analysis using the Fels 

Longitudinal Study data are presented in this chapter. In sections 3.2 and 3.3 the Fels 

study and the relevant data collected by the study are described. The methods used for 

data management are detailed in section 3.4, while the results from the study are 

discussed and conclusions drawn in section 3.5. 

   

3.2. The Fels Longitudinal Study 

Data from the Fels Longitudinal Study was chosen because it contains a large sample of 

participants with serial measurements of the factors defining the metabolic syndrome 

from the time of a participant’s birth until their death. The Fels Longitudinal Study is an 

ongoing multidisciplinary serial study which began in 1929 as a means to investigate 

child growth and development (Roche, 1992). To date, a myriad of data has been 

collected on not just the original participants but also their children, grandchildren and 

great grandchildren. The study does routine data collection multiple times per year for 

participants in the study from birth until the age of twenty-one, then continues collecting 

information every two years until death. Only a small percentage of participants 

(approximately 8%) are lost to follow-up monitoring. The Fels Longitudinal Study 

collects serial information on such areas as anthropometry, dual energy x-ray 

absorptiometry, hydrodensitometry, residual volume, bioelectric impedance, total body 
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water, grip strength and blood pressure, skeletal maturation, health history, menstruation, 

smoking, alcohol, function, and physical activity. All procedures were approved by the 

Wright State University institutional review board, and all participants gave written 

consent in order to join the Fels Longitudinal Study. Recall, the specific measurements of 

interest related to the metabolic syndrome, are waist circumference, blood pressure, 

triglycerides, high density lipoprotein cholesterol (HDL-c), and serum glucose. 

 

3.3. The Metabolic Syndrome Measurements 

 

3.3.1 Blood Pressure  

The measurements of a participant’s diastolic and systolic blood pressure (mm Hg) were 

taken with a standard mercury sphygmomanometer every six months from age two 

through age eighteen, and every two years from then on. Three measurements were taken 

at each examination by a trained technician while participants were seated; the mean of 

the last two measurements was recorded (Roche et al., 1992).  

 

3.3.2 Waist Circumference  

The measurement of an individual’s waist circumference (cm) was taken as part of the 

anthropometric data collected by the Fels Longitudinal Study. The circumference of 

one’s abdomen was taken using techniques similar to corresponding measurements in the 

Anthropometric Standardization Reference Manual (Lohman et al., 1988). For the Fels 
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data set, the measuring of waist circumference changed during the course of the study.  

Specifically the study shifted from collecting waist circumference measurements made at 

the iliac crest to collecting measurements made at the umbilicus, which is a more modern 

method of waist circumference measurement. For the purposes of this research and the 

proposed analysis, the difference in measurement location is not expected to have a 

dramatic effect. For this analysis, if the iliac measurement for a participant is available it 

will be used as the waist circumference measurement in the analysis, while the umbilicus 

measurement will be used if the iliac is not available. All waist circumference 

measurements recorded for the Fels Longitudinal Study were the average of two 

measurements taken by independent observers. These measures were repeated if the two 

observers differed by more than a preset error limit. 

 

3.3.3 Blood Measures 

The measurements of a participant’s serum glucose (mg/dL), triglyceride (mg/dL) and 

high density lipoprotein cholesterol (HDL-c) (mg/dL) levels were observed using fasting 

blood samples collected on participants via a venous blood draw. This information is not 

collected until a participant is approximately eight years of age at the time of their visit. 

 

3.3.4 Additional Measures 

In addition to the measurements described above and the age at each visit, weight and 

skeletal age at each visit and the sex of each participant were available. Weight was 



www.manaraa.com

    

42 

 

measured to 0.1 kg using a SECA brand scale. Skeletal age was assessed using a hand 

radiograph of each participant through the age of eighteen. These radiographs were 

scored using various established skeletal maturation assessment procedures, given that 

skeletal maturation involves the changes in the bones as an individual becomes an adult. 

Since hand-wrist x-rays were taken on most participants in the Fels study through the age 

of eighteen, the “Fels method” was developed to determine skeletal ages using hand-wrist 

x-rays through dual energy a-ray absoptiometry. The Fels method is based on ninety-

eight indicators and thirteen measurements, of which only 25-30% may be used for a 

given chronological age since there is a short range in which certain indicators actually 

provide useful information (Roche et al., 1988). For the purposes of this analysis the 

relative bone age will be used as a proxy for biological maturity. Relative bone age is 

calculated by subtracting the chronological age from the skeletal bone age. 

 

3.4. Data Management and Preparation  

Several data management steps were taken to prepare the original data set for analysis. 

This included preparing childhood data and determining which participants developed the 

metabolic syndrome in adulthood. All data management was performed with SAS 9.2, 

see Appendix section 6.1 and section 6.2. 
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3.4.1 Childhood Subset  

The outcome variables of interest for the analyses include the childhood (ages two 

through eighteen) measures of systolic and diastolic blood pressure. While the other 

factors of the metabolic syndrome (waist circumference, HDL-c, triglycerides, and 

glucose) were not analyzed as outcome variables, this information was retained from 

participant’s childhood visits for descriptive purposes and future considerations. The 

independent childhood variables included sex, birth weight, and skeletal age. Skeletal age 

is a time dependent covariate, while sex and birth weight are independent of age at the 

time of visit. It should be noted that birth weight was not included in the original data set 

as a variable; rather, a participant’s earliest weight measurement recorded (no more than 

five days after birth) was used.  

 In organizing the data a subset was created (CHILD) which included multiple 

rows per subject; one row per visit for ages two (inclusive) through nineteen (exclusive). 

The columns consisted of the outcome measures of interest (systolic and diastolic blood 

pressure, as well as waist circumference, triglycerides, HDL-c, and serum glucose), the 

chronological age at which each measurement was collected, the participant’s skeletal 

age at each visit, birth weight, and sex, as well as a unique participant identification 

number.  

 The CHILD subset consisted of 1361 subjects with a total of 24745 visits. Each 

participant was seen an average of approximately 18.18 times (standard deviation = 

15.24, median = 17). The fewest number of visits for a single participant during 
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childhood was one, while the highest number of childhood visits for a single participant 

was ninety-five. The distribution of the number of childhood visits for the 1361 

participants is shown in Figure 1. 

Figure 1: Distribution of the Number of Childhood Visits 
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Number of Visits

 

 

3.4.2 Adulthood Subset 

A second subset (ADULT) was created which contained the adulthood measurements of 

participants, between the ages of thirty and fifty-five. This subset contained those risk 

factor measurements specific to the metabolic syndrome for participants in adulthood 

such that there were multiple rows per subject (one row per visit). Recall, the categorical 

cut-points for the risk factors are: a systolic blood pressure that is more than 130mm Hg 
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or a diastolic blood pressure that is more than 85mm Hg, a waist circumference that is 

greater than 102 cm for men and greater than 88 cm for women, a triglyceride count that 

is greater than 150 mg/dL, an HDL-c that is less than 40 mg/dL for men and less than 50 

mg/dL for women, and a fasting serum glucose that is greater than 100 mm/dL.   

 There were a total of 5165 visits from 1194 subjects in the ADULT subset with 

4.3 visits on average (standard deviation = 5.46, median = 3) between the ages of thirty 

and fifty-five. The minimum number of visits for a subject between the ages of thirty and 

fifty-five was one while the maximum number of visits was fifty-eight. The distribution 

of the number of adulthood visits for the 1194 participants is shown in Figure 2. 

 

Figure 2: Distribution of the Number of Adulthood Visits 
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 Given the measurements for each participant in adulthood, the number of risk 

factors each participant had at each adulthood visit was calculated. More specifically, it 

was determined whether a participant had no risk factors, exactly one, two, three, four or 

five risk factors at each visit in adulthood. In addition to the exact number of risk factors 

at each visit, it was determined whether a participant had at least one, two, three, four, or 

five risk factors at each visit in adulthood (for example, if a person had three risk factors, 

they would be flagged as having ‘at least one risk factor’, ‘at least two risk factors’, and 

‘at least three risk factors’). 

 These risk factor variables for the 1194 subjects in the ADULT subset were 

merged with the 1361 subjects in the CHILD subset in order to create the dataset used for 

analysis (FINAL). A participant was included in the FINAL dataset if, and only if, they 

had measurements recorded in childhood (ages two through eighteen) and recorded in 

adulthood (ages thirty through fifty-five). The total number of subjects across both 

CHILD and ADULT subsets was 2035; however, 841 subjects were in the CHILD subset 

but not in the ADULT subset, while 674 subjects were in the ADULT subset but not in 

the CHILD subset. Thus, there were only 520 subjects in both the CHILD and ADULT 

subsets, meaning the FINAL subset to be used for analysis contained 520 subjects. All 

henceforth summaries are based on this sample of 520 individuals from the FINAL 

subset.  

 The distribution of the number of participants who were never diagnosed with any 

of the metabolic syndrome risk factors in adulthood and those who were diagnosed with 
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at least one, two, three, four and five risk factors (at some point during adulthood) are 

summarized in Table 2. 

 

Table 2: Distribution of Adulthood Risks for the Metabolic Syndrome 

Number of Risk Factors Count Total Percent 
None 67 466 14.38% 
At Least One 399 466 85.62% 
At Least Two 258 470 54.89% 
At Least Three 153 464 32.97% 
At Least Four 82 477 17.19% 
At Least Five  21 510 4.12% 

 

 A participant was considered to have developed the metabolic syndrome in 

adulthood if they developed three or more risk factors, simultaneously, for at least one 

visit between the ages of thirty and fifty-five. The primary goal of this study is to 

determine if the 153 participants who developed the metabolic syndrome (at least three 

risk factors) differ from the sixty-seven participants who did not develop any of the 

metabolic syndrome risk factors in adulthood, with respect to systolic and diastolic blood 

pressure measures during childhood. 

 

3.4.3 Further Considerations 

Investigation of the response variables of interest during childhood yields a high degree 

of missing data of those factors related to blood measures (triglycerides, HDL-c, and 

glucose). Of the 14848 visits available from ages two through eighteen across the 520 

participants, diastolic blood pressure was missing for 7802 visits (52.55%), systolic blood 
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pressure was missing for 7787 visits (52.44%), waist circumference was missing for 2870 

visits (19.33%), triglycerides was missing for 14247 visits (95.95%), HDL-c was missing 

for 14250 visits (95.97%), and glucose was missing for 14756 visits (99.38%). It is 

unclear why the missing data rate is so high for all of the measures, especially the 

measures obtained from a venous blood sample. While the large degree of missing blood 

measures could be attributed to these measures not commencing until age eight, rates 

above 95% are still unusually high. Another reason for the missing data rates could be 

attributed to visits spanning over more than one day. For example, a participant could be 

seen over several days, with blood pressure recorded on day one, waist circumference on 

day two, and blood taken on day three. This would result in the participants having three 

visits, with data missing on each of these measures 67% of the time. Regardless of the 

reason for missing data, it is difficult to consider including the childhood blood measures 

(HDL-c, triglyceride, and glucose) for analysis in this study. 

 

3.5. Results 

 

3.5.1 Description of the Sample 

There were 153 individuals (69.5%) in the Metabolic Syndrome (MetS) Group; that is, 

the group of adults who were diagnosed with three or more of the metabolic syndrome 

risk factors at least once between the ages of thirty and fifty-five. There were sixty-seven 

(30.5%) individuals in the No Risk Factor (No MetS) Group; that is, the group of adults 
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who were never diagnosed with any of the metabolic syndrome risk factors between the 

ages of thirty and fifty-five. For this sample of 220 individuals, 112 (50.9%) were male, 

while 108 (49.1%) were female. The mean birth weight was 3.29 kg (standard deviation 

= 0.58). There were nineteen participants missing birth weight information; six were in 

the No MetS Group and thirteen were in the MetS Group. The average age the 

participants in the MetS Group were first determined to have at least three of the 

metabolic syndrome risk factors in adulthood was 41.7 years (standard deviation = 7.58). 

 The following sections describe the results from the univariate and multivariate 

models separately for male and female participants. Male subjects are considered in 

section 3.5.2, with the univariate models being discussed first, followed by a multivariate 

model section. Female subjects are considered in section 3.5.3, with the univariate 

models being discussed first, followed by a multivariate model section. The chapter 

concludes with a comparison section (3.5.4) that discusses the different models for male 

and female participants.  

 

3.5.2 Univariate and Multivariate Models for Male Subjects 

 

3.5.2.1 Univariate Models 

For the subset of 112 male participants a multivariate mixed-effects model was fit for the 

two response variables, diastolic blood pressure (DBP) and systolic blood pressure 

(SBP), assuming a complete independence variance-covariance structure as described in 
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section 2.5.1.1. This model produces the same results as two separate univariate mixed-

effects models, but allows for a single likelihood for the model parameters enabling direct 

comparison with the correlated multivariate model fit in the subsequent section. This 

model was fit allowing for a separate quartic age effect for each metabolic syndrome 

group (MetS, No MetS), and adjusted for relative age and birth weight. Random 

intercepts and (linear first order) slopes were fit for each participant to account for 

within-subject correlations. The fixed-effects tests for the two response variables are 

summarized in Table 3. 

 

Table 3: Fixed-Effects Tests for Males (Univariate) 

 DBP SBP 
Effect NDF DDF F p-value NDF DDF F p-value
Relative Age 1 803 0.35 0.5544 1 714 5.77 0.0165
Birth Weight 1 77.1 0.06 0.8127 1 87.4 1.11 0.2958
Age 1 1099 7.44 0.0065 1 1113 10.48 0.0012
METS Group 1 1044 0.66 0.4157 1 1055 5.09 0.0242
Age x MetS Group 1 1094 0.07 0.7908 1 1109 5.45 0.0197
Age2 1 1101 6.06 0.0140 1 1116 9.80 0.0018
Age2 x MetS Group 1 1095 0.03 0.8627 1 1111 4.71 0.0303
Age3 1 1100 5.52 0.0190 1 1116 10.51 0.0012
Age3 x MetS Group 1 1094 0.01 0.9096 1 1111 4.10 0.0431
Age4 1 1099 4.83 0.0281 1 1116 10.12 0.0015
Age4 x MetS Group 1 1093 <0.01 0.9682 1 1109 3.61 0.0577

NDF, DDF = numerator, denominator degrees of freedom 
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  Examining Table 3, there was evidence of a statistically significant quartic 

relationship between age and both DBP (p-value = 0.0281) and SBP (p-value = 0.0015) 

for males. However, this quartic relationship was not significantly different between the 

two MetS Groups (MetS and No MetS) for either DBP (p-value = 0.9682) or SBP (p-

value = 0.0577). The differences in DBP and SBP between the metabolic syndrome 

groups at each age for males are summarized in Table 4. 

 The univariate plots for DBP and SBP are summarized in Panels (a) and (b) of 

Figure 3. From these plots notice that both DBP and SBP increased with age, with greater 

increases associated with SBP than with DBP. In general, it also appears that those who 

developed at least three metabolic syndrome risk factors in adulthood had higher blood 

pressure measures during childhood than those who did not develop any metabolic 

syndrome risk factors in adulthood. 

 



www.manaraa.com

    

52 

 

Table 4: Male’s LS Means Differences (Univariate) 

DBP (MetS-No MetS) SBP (MetS-No MetS) 
Age Difference SE p-value 95% CI Difference SE p-value 95% CI 

2 10.250 6.466 0.1135 (-2.451, 22.952) -11.010 6.384 0.0827 (-23.640, 1.441)
3 9.116 4.222 0.0320 (0.793, 17.438) -3.791 4.171 0.3644 (-12.011, 4.430)
4 8.248 3.259 0.0127 (1.794, 14.702) 0.792 3.221 0.8062 (-5.583, 7.168)
5 7.598 2.887 0.0098 (1.875, 13.322) 3.322 2.852 0.2465 (-2.327, 8.971)
6 7.120 2.630 0.0079 (1.904, 12.335) 4.388 2.592 0.0933 (-0.748, 9.524)
7 6.767 2.373 0.0053 (2.058, 11.476) 4.495 2.328 0.0562 (-0.120, 9.110)
8 6.498 2.157 0.0033 (2.214, 10.782) 4.064 2.099 0.0556 (-0.100, 8.228)
9 6.270 2.024 0.0026 (2.250, 10.289) 3.433 1.947 0.0806 (-0.426, 7.293)
10 6.043 1.958 0.0026 (2.158, 9.929) 2.856 1.855 0.1265 (-0.820, 6.532)
11 5.780 1.914 0.0032 (1.984, 9.576) 2.502 1.780 0.1625 (-1.023, 6.027)
12 5.445 1.870 0.0045 (1.733, 9.157) 2.458 1.610 0.1510 (-0.909, 5.825)
13 5.002 1.855 0.0083 (1.319, 8.686) 2.725 1.642 0.1000 (-0.531, 5.981)
14 4.421 1.904 0.0225 (0.638, 8.203) 3.223 1.653 0.0539 (-0.055, 6.500)
15 3.669 2.010 0.0712 (-0.324, 7.661) 3.786 1.727 0.0304 (0.364, 7.208)
16 2.718 2.112 0.2017 (-1.481, 6.916) 4.165 1.796 0.0224 (0.603, 7.727)
17 1.540 2.228 0.4915 (-2.894, 5.974) 4.028 1.881 0.0349 (0.293, 7.761)
18 0.110 2.736 0.9680 (-5.302, 5.522) 2.955 2.406 0.2211 (-1.794, 7.704)

  

 Using an .05α = decision rule, there are significant differences between the MetS 

Group and the No MetS Group at ages three through fourteen (p-values ≤  0.0320) for 

DBP, and at ages fifteen through seventeen (p-values < 0.0350) for SBP. However, when 

using a more conservative Bonferroni adjustment for multiple comparisons of 

.05 17 .0029α = =  the only statistically significant differences that remain were at ages 

nine and ten (both p-values = .0026) for DBP. 
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Figure 3: DBP and SBP Plots for Male Subjects (Univariate and Multivariate Models)  
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DBP Males, 4th Order Full Model, Multivariate
Adjusting for Relative Age and Birth Weight (c)
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 There was also evidence that relative age had a significant effect on SBP (p-value 

= 0.0165), but not on DBP (p-value = 0.5544). Amongst males, a one year increase in 

relative age (i.e. physical maturity) was significantly associated with a 0.931 increase (SE 

= 0.388; 95% CI = [0.170, 1.692]) in SBP. A one year increase in relative age was 

associated with a nominal decrease of 0.240 (SE = 0.406; 95% CI = [-1.036, 0.556]) in 

DBP. There was not evidence of a significant relationship between birth weight and 

either DBP (p-value = 0.8127) or SBP (p-value = 0.2958). For males, a one kg increase in 

birth weight was associated with a nominal decrease of 1.186 (SE = 1.128; 95% CI = [-

3.428, 1.055]) in SBP, and a nominal decrease of 0.302 (SE = 1.268; 95% CI = [-2827, 

2.224]) in DBP. 

 Now that the fixed effects have been considered for the male univariate models, 

the random effects (intercepts and slopes) will be investigated. The estimated variance-

covariance matrix, G, and the estimated G correlation matrix for both the DBP and the 

SBP response variables may be seen below in Table 5 and Table 6, respectively. 

 

Table 5: Estimated G Variance-Covariance Matrix for Males (Univariate) 

  DBP SBP 
  Intercept Slope Intercept Slope 

Intercept 173.240 -10.441  DBP 
Slope -10.441 0.845  

Intercept 169.550 -9.962 SBP 
Slope -9.962 0.722 
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Table 6: Estimated G Correlation Matrix for Males (Univariate) 

  DBP SBP 
  Intercept Slope Intercept Slope 

Intercept 1.000 -0.863   DBP 
Slope -0.863 1.000   

Intercept   1.000 -0.901 SBP 
Slope   -0.901 1.000 

 

 From Table 5, it may be seen that variability in the random intercepts and slopes 

is relatively similar for both DBP and SBP, though the variability for DBP is slightly 

higher. The same may be said of the covariance between the intercepts and slopes for 

SBP and DBP; while both are similar, DBP appears to be more extreme. Also, while not 

only being similar, the covariance’s for both DBP and SBP are negative, which is 

indicative of a negative correlation, as seen in the G correlation matrix in Table 6. This 

negative correlation indicates that participants with lower SBP and DBP intercepts (blood 

pressure at “age = 0”) have higher increases in blood pressure over childhood (slopes), 

while participants with higher SBP and DBP intercepts have lower increases in blood 

pressure over time. 

 

3.5.2.2 Multivariate Model 

  For the subset of 112 male participants, a multivariate mixed-effects model was 

fit with for the two response variables, DBP and SBP, assuming an unstructured 

variance-covariance structure as discussed in section 2.5. This model is the same as the 
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univariate model discussed in the previous section, except the sets of random intercepts 

and slopes for each response are now correlated rather than independent. This 

multivariate model was fit allowing for a separate quartic age effect for each metabolic 

syndrome group (MetS, No MetS), and adjusted for relative age and birth weight. 

Random intercepts and (linear first order) slopes were fit for each participant to account 

for within-subject correlations. The fixed-effects tests for the two response variables are 

summarized in Table 7. 

 The multivariate plots for DBP and SBP are summarized in Panels (c) and (d) of 

Figure 3. From these plots notice that both DBP and SBP increased with age, with greater 

increases associated with SBP than with DBP. In general, it also appears that those who 

developed at least three metabolic syndrome risk factors in adulthood had higher blood 

pressure measures during childhood than those who did not develop any metabolic 

syndrome risk factors in adulthood. 



www.manaraa.com

    

57 

 

Table 7: Fixed-Effects Tests for Males (Multivariate) 

 Multivariate Males 
Effect NDF DDF F p-value 
Response 1 810 4.97 0.0261 
Relative Age 1 1209 0.13 0.7144 
Birth Weight 1 81.8 0.61 0.4381 
Relative Age x Response 1 399 8.59 0.0036 
Birth Weight x Response 1 76.5 0.82 0.3693 
Age 1 2113 18.15 <.0001 
METS Group 1 1749 1.21 0.2720 
Age x MetS group 1 2107 2.06 0.1512 
Age x Response 1 1319 0.96 0.3274 
Response x MetS Group 1 989 3.29 0.0701 
Age*Response x MetS Group 1 1303 2.38 0.1228 
Age2 1 2128 16.03 <.0001 
Age2 x Response 1 1462 1.00 0.3178 
Age2 x MetS Group 1 2120 1.76 0.1851 
Age2 x Response x MetS Group 1 1441 2.07 0.1507 
Age3 1 2131 16.06 <.0001 
Age3 x Response 1 1579 1.19 0.2753 
Age3 x MetS Group 1 2123 1.53 0.2161 
Age3 x Response x MetS group 1 1557 1.82 0.1771 
Age4 1 1721 14.29 0.0002 
Age4 x Response 1 1665 2.63 0.1053 
Age4 x MetS Group 1 1674 2.29 0.1302 
Age4 x Response x MetS Group 1 1663 1.57 0.2111 

NDF, DDF = numerator, denominator degrees of freedom 

 

 As with the two univariate models, the multivariate model showed evidence of a 

significant quartic relationship between age and both responses, DBP (p-value = 0.0425) 

and SBP (p-value = 0.0003). Furthermore, there was not evidence of a significant 
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difference between the two MetS Groups for either DBP (p-value = 0.9987) or SBP (p-

value = 0.0835). The differences in DBP and SBP between the metabolic syndrome 

groups at each age for males are summarized in Table 8. 

 Using an .05α = decision rule, there were significant differences between the 

MetS Group and the No MetS Group at ages four through fourteen (p-values ≤  0.0409) 

for DBP, and at ages fourteen through seventeen (p-values ≤  0.0382) for SBP. However, 

when using a more conservative Bonferroni adjustment for multiple comparisons of 

.05 17 0.0029,α = =  the only statistically significant differences that remain were at ages 

nine and ten (both p-values ≤  0.0023) for DBP. 
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Table 8: Male’s LS Means Differences (Multivariate) 

DBP (MetS-No MetS) SBP (MetS-No MetS) 
AGE Difference SE p-value 95% CI Difference SE p-value 95% CI 

2 6.477 6.299 0.3044 (-5.900, 18.854) -9.830 6.281 0.1183 (-22.170,2.513) 
3 6.481 4.082 0.1140 (-1.570, 14.532) -3.290 4.116 0.4257 (-11.400,4.828) 
4 6.497 3.140 0.0409 (0.275, 12.719) 0.833 3.199 0.7950 (-5.499,7.164) 
5 6.510 2.789 0.0216 (0.977, 12.043) 3.128 2.850 0.2748 (-2.519,8.775) 
6 6.508 2.553 0.0123 (1.443, 11.572) 4.126 2.607 0.1163 (-1.040,9.292) 
7 6.476 2.315 0.0062 (1.881, 11.070) 4.277 2.358 0.0725 (-0.398,8.952) 
8 6.401 2.115 0.0032 (2.200, 10.602) 3.955 2.141 0.0676 (-0.292,8.201) 
9 6.269 1.995 0.0022 (2.308, 10.231) 3.458 1.994 0.0859 (-0.497,7.412) 
10 6.068 1.938 0.0023 (2.222, 9.913) 3.011 1.903 0.1165 (-0.760,6.782) 
11 5.783 1.902 0.0030 (2.012, 9.554) 2.762 1.826 0.1331 (-0.855,6.378) 
12 5.401 1.866 0.0047 (1.698, 9.104) 2.782 1.743 0.1134 (-0.672,6.236) 
13 4.909 1.859 0.0097 (1.217, 8.602) 3.070 1.683 0.0711 (-0.269,6.408) 
14 4.294 1.917 0.0275 (0.487, 8.102) 3.546 1.689 0.0382 (0.197,6.896) 
15 3.543 2.027 0.0838 (-0.483, 7.569) 4.058 1.754 0.0226 (0.581,7.534) 
16 2.643 2.131 0.2182 (-1.592, 6.878) 4.375 1.813 0.0176 (0.779,7.972) 
17 1.580 2.246 0.4838 (-2.890, 6.051) 4.194 1.888 0.0287 (0.446,7.943) 
18 0.343 2.750 0.9010 (-5.098, 5.783) 3.134 2.403 0.1939 (-1.608,7.876) 

 

 There was evidence that relative age had a significant effect on SBP (p-value = 

0.0342), but not on DBP (p-value = 0.1401). Amongst males, a one year increase in 

relative age (i.e. physical maturity) was significantly associated with a 0.794 increase (SE 

= 0.374, 95% CI = [0.059, 1.528] in SBP. A one year increase in relative age was 

associated with a nominal decrease of 0.573 (SE = 0.388; 95% CI = [-1.334, 0.189]) in 

DBP. There was not evidence of a significant relationship between birth weight and 

either DBP (p-value = 0.7677) or SBP (p-value = 0.2610). For males, a one kg increase in 



www.manaraa.com

    

60 

 

birth weight was associated with a nominal decrease of 0.366 (SE = 1.235; 95% CI = [-

2.825, 2.093]) in DBP, and a nominal decrease of 1.314 (SE = 1.161; 95% CI = [-3.623, 

0.995]) in SBP.  

 Now that the fixed effects have been considered for the male multivariate model, 

the random effects (intercepts and slopes) will be investigated. For the male multivariate 

model the estimated variance-covariance matrix, G, and the estimated G correlation 

matrix for both the DBP and the SBP response variables may be seen in Table 9 and 

Table 10, respectively. 

 

Table 9: Estimated G Variance-Covariance Matrix for Males  (Multivariate) 

  DBP SBP 
  Intercept Slope Intercept Slope 

Intercept 162.010 -9.6903 136.180 -7.424 DBP 
Slope -9.6903 0.800 -7.199 0.469 

Intercept 136.18 -7.199 171.930 -9.718 SBP 
Slope -7.4235 0.469 -9.718 0.687 

 

Table 10: Estimated G Correlation Matrix for Males (Multivariate) 

  DBP SBP 
  Intercept Slope Intercept Slope 

Intercept 1.000 -0.851 0.816 -0.704 DBP 
Slope -0.851 1.000 -0.614 0.633 

Intercept 0.816 -0.614 1.000 -0.894 SBP 
Slope -0.704 0.633 -0.894 1.000 
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 From the random effects, it may be seen that variability is relatively similar for 

both DBP and SBP, though the variability for DBP is slightly higher. The same may be 

said of the covariance for SBP and DBP, while both are similar, DBP appears to be more 

extreme. Also, while not only being similar, the covariance’s for both DBP and SBP are 

negative, which is indicative of a negative correlation, which is seen in the G correlation 

matrix.  

 With the multivariate mixed-effects model is possible to investigate how the 

evolution of DBP is associated with the evolution of SBP, the association of the 

evolutions (AOE). It is also possible to determine how the association between DBP and 

SBP evolves over time, the evolution of the association (EOA). 

 The AOE can be determined by using equation (2.23) from section 2.5.2 or by 

reading the correlation between the two slopes directly from the estimated G correlation 

matrix (Table 10). Here the AOE between the random slope for DBP and the random 

slope for SBP is 0.633.  

 The EOA can be determined, and then visualized, using the marginal correlation 

between DBP and SBP, equation (2.25) from section 2.5.3. To visualize this, the implied 

correlation has been calculated and plotted over time using the marginal correlation 

between both frequencies in Figure 4. Notice that the association is strongest at age two 

at around 0.6, and this association decreases over time, leveling out at approximately 0.2 

between fourteen and sixteen years of age.  
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Figure 4: Evolution of the Associations (Males) 
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3.5.3 Univariate and Multivariate Models for Female Subjects 

 

3.5.3.1 Univariate Models 

For the subset of 108 female participants a multivariate mixed-effects model was fit for 

the two response variables, diastolic blood pressure (DBP) and systolic blood pressure 
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(SBP), assuming a complete independence variance-covariance structure as described in 

section 2.5.1.1. This model produces the same results as two separate univariate mixed-

effects models, but allows for a single likelihood for the model parameters enabling direct 

comparison with the correlated multivariate model fit in the subsequent section. This 

model was fit allowing for a separate quadratic age effect for each metabolic syndrome 

group (MetS, No MetS), and adjusted for relative age and birth weight. Random 

intercepts and (linear first order) slopes were fit for each participant to account for 

within-subject correlations. The fixed-effects tests for the two response variables are 

summarized in  

 

Table 11. 

 

Table 11: Fixed-Effects Tests for Females (Univariate) 

 DBP Females SBP Females 
Effect NDF DDF F p-value NDF DDF F p-value 
Relative Age 1 809 1.60 0.2065 1 826 3.03 0.0821
Birth Weight 1 74 1.80 0.1843 1 77.7 0.30 0.5885
Age 1 713 13.89 0.0002 1 732 29.38 <.0001
MetS Group 1 322 0.26 0.6093 1 326 0.05 0.8151
Age x MetS Group 1 706 3.17 0.0757 1 725 0.19 0.6661
Age2 1 855 6.12 0.0136 1 881 11.02 0.0009
Age2 x MetS Group 1 852 4.71 0.0303 1 877 0.19 0.6599

NDF, DDF = numerator, denominator degrees of freedom 
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 The univariate plots for DBP and SBP are shown in Panels (a) and (b) of Figure 5. 

From these plots, notice that both DBP and SBP increase with age, with greater increases 

associated with SBP than with DBP. In general, it also appears that those who develop at 

least three metabolic syndrome risk factors in adulthood had higher blood pressure 

measures during childhood than those who did not develop any metabolic syndrome risk 

factors in adulthood.  

 Statistically, there was evidence of a significant quadratic relationship between 

age and both DBP (p-value = 0.0136) and SBP (p-value = 0.0009) for females. This 

quadratic relationship was significantly different between the two MetS Groups (MetS 

and No MetS) for DBP (p-value = 0.0303) but not SBP (p-value = 0.6599). The 

differences in DBP and SBP between the metabolic syndrome groups at each age for 

females are summarized in Table 12. 
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Table 12: Female’s LS Means Differences (Univariate) 

 DBP (MetS-No MetS) SBP (MetS-No MetS) 
Age Difference SE p-value 95% CI Difference SE p-value 95% CI 

2 -0.040 4.501 0.9934 (-8.906, 8.831) 2.171 4.462 0.6271 (-6.620, 10.960)
3 1.263 3.812 0.7407 (-6.255, 8.782) 2.496 3.783 0.5102 (-4.960, 9.956) 
4 2.395 3.215 0.4574 (-3.954, 8.744) 2.788 3.19 0.3835 (-3.510, 9.087) 
5 3.358 2.712 0.2179 (-2.008, 8.723) 3.046 2.686 0.2589 (-2.270, 8.360) 
6 4.152 2.306 0.0746 (-0.420, 8.724) 3.272 2.274 0.1531 (-1.240, 7.778) 
7 4.778 1.998 0.0187 (0.812, 8.744) 3.464 1.954 0.0795 (-0.410, 7.342) 
8 5.235 1.779 0.0041 (1.700, 8.770) 3.623 1.722 0.0382 (0.202, 7.044) 
9 5.524 1.637 0.0011 (2.273, 8.775) 3.748 1.568 0.0189 (0.634, 6.862) 
10 5.644 1.548 0.0004 (2.570, 8.717) 3.841 1.474 0.0106 (0.915, 6.766) 
11 5.595 1.493 0.0003 (2.633, 8.557) 3.900 1.422 0.0072 (1.079, 6.721) 
12 5.378 1.454 0.0004 (2.493, 8.264) 3.926 1.397 0.0060 (1.154, 6.698) 
13 4.993 1.427 0.0007 (2.160, 7.825) 3.918 1.394 0.0060 (1.150, 6.687) 
14 4.438 1.416 0.0024 (1.623, 7.253) 3.878 1.419 0.0076 (1.058, 6.698) 
15 3.715 1.439 0.0118 (0.849, 6.581) 3.804 1.486 0.0124 (0.847, 6.761) 
16 2.824 1.525 0.068 (-0.214, 5.862) 3.697 1.616 0.0248 (0.480, 6.914) 
17 1.764 1.699 0.3023 (-1.616, 5.144) 3.557 1.828 0.0549 (-0.080, 7.191) 
18 0.535 1.979 0.7875 (-3.391, 4.461) 3.384 2.132 0.1157 (-0.850, 7.613) 

 

 Using an .05α = decision rule, there were significant differences between the 

MetS Group and the No MetS Group at ages seven through fifteen (p-values ≤  0.0187) 

for DBP, and at ages eight through sixteen (p-values ≤  0.0382) for SBP. However, when 

using a more conservative Bonferroni adjustment for multiple comparisons of 

.05 17 0.0029α = =  the only statistically significant differences that remain were at ages 

nine through fourteen (p-values ≤  0.0024) for DBP.  
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Figure 5: DBP and SBP Plots for Female Subjects (Univariate and Multivariate Models) 
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SBP Females, 2nd Order Full Model, Univariate
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DBP Females, 2nd Order Full Model, Multivariate
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 There was not evidence that relative age had a significant effect on DBP (p-value 

= 0.2065) or on SBP (p-value = 0.0821). For females, a one year increase in relative age 

was associated with a nominal increase of 0.462 (SE = 0.365; 95% CI = [-0.255, 1.179]) 

in DBP and a nominal increase of 0.623 (SE = 0.358; 95% CI = [-0.079, 1.324]) in SBP. 

There was not evidence that birth weight had a significant effect on DBP (p-value = 

0.1843) or SBP (p-value =0.5885). For females, a one kg increase in birth weight was 

associated with a nominal increase of 1.679 (SE = 1.253; 95% CI = [-0.818, 4.175]) in 

DBP and a nominal increase of 0.664 (SE = 1.222; 95% CI = [-1.77, 3.098]) in SBP.  

 Now that the fixed effects have been considered for the female univariate models, 

the random effects (intercepts and slopes) will be investigated. For the female univariate 

models, the estimated variance-covariance matrix, G, and the estimated G correlation 

matrix for both the DBP and the SBP response variables may be seen in Table 13 and 

Table 14, respectively. 

 

Table 13: Estimated G Variance-Covariance Matrix for Females (Univariate) 

  DBP SBP 
  Intercept Slope Intercept Slope 

Intercept 138.910 -7.605   DBP 
Slope -7.605 0.530   

Intercept   153.230 -9.626 SBP 
Slope   -9.626 0.747 
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Table 14: Estimated G Correlation Matrix for Females (Univariate) 

  DBP SBP 
  Intercept Slope Intercept Slope 

Intercept 1.000 -0.886   DBP 
Slope -0.886 1.000   

Intercept   1.000 -0.899 SBP 
Slope   -0.899 1.000 

 

 From Table 13, it may be seen that variability in the random intercepts and slopes 

is relatively similar for both DBP and SBP, though the variability for SBP is slightly 

higher (recall, this is the opposite of what was seen among the male participants). The 

same may be said of the covariance between the random intercepts and slopes for SBP 

and DBP, while both are similar, SBP appears to be slightly more extreme. Also, while 

not only being similar, the covariance’s for both DBP and SBP are negative, which is 

indicative of a negative correlation, as seen in the G correlation matrix.  

 

3.5.3.2 Multivariate Model 

For the subset of 108 female participants, a multivariate mixed-effects model was fit with 

for the two response variables, DBP and SBP, assuming an unstructured variance-

covariance structure as discussed in section 2.5. This model is the same as the univariate 

model discussed in the previous section, except the sets of random intercepts and slopes 

for each response are now correlated rather than independent. This multivariate model 

was fit allowing for a separate quadratic age effect for each metabolic syndrome group 
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(MetS, No MetS), and adjusted for relative age and birth weight. Random intercepts and 

(linear first order) slopes were fit for each participant to account for within-subject 

correlations. The fixed-effects tests for the two response variables are summarized in 

Table 15. 

 

Table 15: Fixed-Effects Tests for Females (Multivariate) 

Effect NDF DDF F p-value 
Response 1 209 49.87 <.0001 
Relative Age 1 1478 1.35 0.2448 
Birth Weight 1 72 0.99 0.3235 
Relative Age x Response 1 423 2.06 0.1515 
Birth Weight x Response 1 92.4 0.49 0.4869 
Age 1 1158 43.16 <.0001 
MetS Group 1 336 0.20 0.6523 
Age x MetS group 1 1147 3.19 0.0743 
Age x Response 1 370 1.75 0.1863 
Response x MetS Group 1 200 0.47 0.4915 
Age*Response x MetS Group 1 362 1.51 0.2202 
Age2 1 1638 19.73 <.0001 
Age2 x Response 1 506 0.48 0.4874 
Age2 x MetS Group 1 1630 4.36 0.0370 
Age2 x Response x MetS Group 1 496 2.48 0.1158 

NDF, DDF = numerator, denominator degrees of freedom 

 

 The multivariate plots for DBP and SBP are shown in Panels (c) and (d) of Figure 

5. From these plots, notice that both DBP and SBP increases with age, with greater 

increases associated with SBP than with DBP. In general, it also appears that those who 
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developed at least three metabolic syndrome risk factors in adulthood had higher blood 

pressure measures during childhood than those who did not develop any metabolic 

syndrome risk factors in adulthood. 

 As with the two univariate models, the multivariate model indicated evidence of a 

significant quadratic relationship between age and both responses, DBP (p-value = 

0.0030) and SBP (p-value < 0.0001). Furthermore, there was evidence of a significant 

difference between the two MetS Groups for DBP (p-value = 0.0099), however, there 

was not evidence of a significant difference between the two MetS Groups for SBP (p-

value = 0.5229). The differences in DBP and SBP between the metabolic syndrome 

groups at each age for females are summarized in Table 16. 

 Using an .05α = decision rule, there were significant differences between the 

MetS Group and the No MetS Group at ages seven through fifteen (p-values ≤  0.0210) 

for DBP, and at ages nine through seventeen (p-values ≤  0.0479) for SBP. However, 

when using a more conservative Bonferroni adjustment for multiple comparisons of 

.05 17 0.0029α = =  the only statistically significant differences that remain were at ages 

nine through thirteen (p-values ≤  0.0012) for DBP. 
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Table 16: Female’s LS Means Differences (Multivariate) 

 DBP (MetS-No MetS) SBP (MetS-No MetS) 
Age Difference SE p-value 95% CI Difference SE p-value 95% CI 

2 -0.838 4.280 0.8450 (-9.274, 7.599) 1.080 4.313 0.8024 (-7.417,9.577) 
3 0.643 3.644 0.8602 (-6.548, 7.833) 1.578 3.675 0.6681 (-5.671,8.827) 
4 1.934 3.095 0.5331 (-4.182, 8.050) 2.030 3.120 0.5161 (-4.131,8.192) 
5 3.035 2.636 0.2518 (-2.182, 8.253) 2.437 2.648 0.3592 (-2.802,7.675) 
6 3.947 2.268 0.0847 (-0.550, 8.444) 2.797 2.262 0.2188 (-1.684,7.278) 
7 4.67 1.989 0.0210 (0.721, 8.619) 3.112 1.960 0.1155 (-0.777,7.000) 
8 5.203 1.792 0.0046 (1.644, 8.761) 3.381 1.738 0.0548 (-0.071,6.832) 
9 5.546 1.661 0.0012 (2.248, 8.844) 3.604 1.587 0.0254 (0.453,6.754) 
10 5.700 1.577 0.0005 (2.570, 8.830) 3.781 1.491 0.0128 (0.822,6.740) 
11 5.665 1.522 0.0003 (2.644, 8.685) 3.912 1.435 0.0076 (1.0646.760) 
12 5.440 1.483 0.0004 (2.495, 8.384) 3.997 1.409 0.0055 (1.202,6.793) 
13 5.025 1.456 0.0009 (2.132, 7.918) 4.037 1.407 0.0051 (1.242,6.832) 
14 4.421 1.446 0.0030 (1.543, 7.299) 4.031 1.436 0.0063 (1.174,6.888) 
15 3.628 1.471 0.0160 (0.696, 6.559) 3.979 1.510 0.0102 (0.971,6.987) 
16 2.645 1.554 0.0932 (-0.454, 5.744) 3.881 1.646 0.0210 (0.601,7.161) 
17 1.472 1.720 0.3947 (-1.952, 4.897) 3.737 1.860 0.0479 (0.036,7.439) 
18 0.111 1.986 0.9557 (-3.830, 4.051) 3.548 2.162 0.1039 (-0.742,7.838) 

 

 There was not evidence that relative age had a significant effect on either DBP (p-

value = 0.944), or on SBP (p-value = 0.0708). Amongst females, a one year increase in 

relative age was associated with a nominal increase of 0.024 (SE = 0.344, 95% CI = [-

0.651, 0.699] in DBP and a nominal increase of 0.611 (SE = 0.338, 95% CI = [-0.052, 

1.274]) in SBP. There was also not evidence of a significant relationship between birth 

weight and either DBP (p-value = 0.2442) or SBP (p-value = 0.5189). For females, a one 

kg increase in birth weight was associated with a nominal increase of 1.511 (SE = 1.287; 
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95% CI = [-1.054, 4.075]) in DBP, and a nominal increase of 0.8137 (SE = 1.256; 95% 

CI = [-1.687, 3.315]) in SBP.  

 Now that the fixed effects have been considered for the female Multivariate 

model, the random-effects (intercept and slopes) will be investigated. For the female 

multivariate model the estimated variance-covariance matrix, G, and the estimated G 

correlation matrix for both the DBP and the SBP response variables may be seen in Table 

17 and Table 18. 

 

Table 17: Estimated G Variance-Covariance Matrix for Females (Multivariate) 

  DBP SBP 
  Intercept Slope Intercept Slope 

Intercept 139.800 -7.453 142.500 -9.157 DBP 
Slope -7.453 0.518 -7.777 0.603 

Intercept 142.500 -7.777 165.830 -10.510 SBP 
Slope -9.157 0.603 -10.510 0.817 

 

Table 18: Estimated G Correlation Matrix for Females (Multivariate) 

  DBP SBP 
  Intercept Slope Intercept Slope 

Intercept 1.000 -0.876 0.936 -0.857 DBP 
Slope -0.876 1.000 -0.839 0.928 

Intercept 0.936 -0.839 1.000 -0.903 SBP 
Slope -0.857 0.928 -0.903 1.000 

 

 From Table 16, it may be seen that variability is relatively similar for both DBP 

and SBP, though the variability for SBP is slightly higher. The same may be said of the 



www.manaraa.com

    

73 

 

covariance for DBP and SBP, while both are similar, SBP appears to be slightly more 

extreme. Also, while not only being similar, the covariance’s for both DBP and SBP are 

negative, which is indicative of a negative correlation, as seen in the G correlation 

matrix.  

 With the multivariate mixed-effects model is possible to investigate how the 

evolution of DBP is associated with the evolution of SBP, the association of the 

evolutions (AOE). It is also possible to determine how the association between DBP and 

SBP evolves over time, the evolution of the association (EOA). 

 The AOE can be determined by using equation (2.23) from section 2.5.2 or by 

reading the correlation between the two slopes directly from the estimated G correlation 

matrix (Table 18). Here the AOE between the random slope for DBP and the random 

slope for SBP is 0.928. The association in the evolutions of DBP and SBP is much higher 

than that seen with males (recall, for the male participants AOE = 0.663). 

 The EOA can be determined, and then visualized, using the marginal correlation 

between DBP and SBP, equation (2.25) from section 2.5.3. To visualize this, the implied 

correlation has been calculated and plotted over time using the marginal correlation 

between both frequencies in Figure 6. Notice, that at its strongest the correlation is just 

less than 0.7, at age two, and this association decreases over time through age fourteen 

where it bottoms out at approximately 0.3. At age fourteen the correlation begins to 

increase through age eighteen, nearing an association of approximately 0.4. For females, 
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this increase in the AOE in the later ages of childhood is far more extreme than that seen 

with males. 

 

Figure 6: Associations of the Evolution (Females) 

Age

0 2 4 6 8 10 12 14 16 18 20

M
ar

gi
na

l C
or

re
la

tio
n

0.2

0.3

0.4

0.5

0.6

0.7

 

  

 



www.manaraa.com

    

75 

 

3.5.4 Comparisons 

 Now that both univariate and multivariate mixed-effects models have been considered 

for male and female participants, some time will be taken to compare both types of 

mixed-models for each sex. For the male participants, the estimated values for both the 

variance-covariance G matrix (Table 5) and the correlation G matrix (Table 6) have been 

combined for comparison purposes in Table 19, for both the univariate models and the 

multivariate model. When comparing the results from the independent setting to the 

results from the multivariate setting there are several points of interest. The -2 log-

likelihood value corresponding to the two univariate models for males (fit as a joint 

model with appropriate covariance terMetS equal to zero) was equal to 17000.1.  The -2 

log-likelihood value for the multivariate model was 16962.4. A likelihood ratio test 

indicated that the multivariate model provided a significantly better fit than the two 

univariate models ( 2 37.7χ = , df=4, p-value <0.0001). With regards to Akaike’s 

information criterion (AIC), the multivariate model (AIC = 16962.4) is also indicated as a 

better fit than the univariate model (AIC = 17016.1) (since a smaller AIC value indicates 

a better fit). Notice how the multivariate model seems to decrease the variability in the 

random effects, this may be seen in Table 19, or by recalling Table 5 and Table 9. Taking 

into account the SE’s for the variance and covariance estimates, the multivariate model in 

general allowed for more accurate prediction (smaller errors) of the variability in the 

random effects, though just slightly. 
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Table 19: REML Estimates for the Covariance and Correlation Parameters in the 
Univariate and Multivariate Models for the Male Participants 

  
 Covariance Estimates Correlation Estimates 
 Univariate Multivariate Univariate Multivariate 
-2 Res ll 17000.1 16938.4 17000.1 16938.4
AIC 17016.1 16962.4 17016.1 16962.4
   

2
1a

σ  173.240 (37.131) 162.010 (35.439) 1.000 1.000

1 2a aσ  - 136.180 (29.048) - 0.816
2
2aσ  169.550 (35.441) 171.930 (34.975) 1.000 1.000

1 1a bσ  -10.441 (2.062) -9.690 (2.496) -0.086 -0.851

2 1a bσ  - -7.199 (2.029) - -0.614
2
1b

σ  0.845 (0.203) 0.800 (0.196) 1.000 1.000

1 2a bσ  - -7.424 (1.932) - -0.704

2 2a bσ  -9.962 (2.404) -9.718 (2.305) -0.901 -0.894

1 2b bσ  - 0.468 (0.137) - 0.633
2
2bσ  0.722 (0.176) 0.687 (0.165) 1.000 1.000

 
2
1σ  56.322 (2.529) 56.509 (2.546) 56.322 (2.529) 56.509 (2.546)
2
2σ  55.289 (2.460) 55.330 (2.457) 55.289 (2.460) 55.330 (2.457)

(-2 Res ll = log-likelihood, AIC = Akaike’s information criterion.) 

  

 Comparing the fixed effects for the univariate and multivariate mixed-models for 

the male subjects, some interesting things may be considered.  First, and foremost, there 

is the question of whether the different models reached the same bottom-line conclusion. 
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Recall, that for the univariate model (Table 4), significant differences were found 

between the two MetS groups at ages three through fourteen, for DBP, and fifteen 

through seventeen, for SBP. Compare this to the multivariate model (Table 8), where 

significant differences were found between the two MetS groups at ages four through 

fourteen, for DBP, and fourteen through seventeen, for SBP. Essentially the same 

conclusion was drawn for both models. Moreover, both the univariate and multivariate 

models found that only ages nine and ten, for DBP, were significant when using a more 

conservative Bonferroni correction. 

 What is even more telling, when comparing the two models’ LS means 

differences (i.e. comparing Table 4 and Table 8), was the precision of these differences. 

For each age, not only were the estimates for the differences slightly smaller for the 

multivariate model, the SE’s were also slightly smaller, when compared to the univariate 

model. The SE’s provided further evidence that, when applicable, fitting a joint 

multivariate mixed-effects model is superior to fitting multiple univariate models. 

 Comparing the covariates between the two types of models will yield further 

information of interest. Recall, from section 3.5.2, that both the univariate and 

multivariate models found a significant relationship between relative age and SBP. Both 

were positively associated with SBP (slopes of 0.794 compared to 0.931), however, the 

SE (0.374 compared to 0.388) was smaller for the multivariate model, hence the 95% CI 

was also tighter for the multivariate model. Both models also concluded a nominal 
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decrease with regards to relative age for DBP, and with regards to birth weight for both 

DBP and SBP, see Table 20. 

 

Table 20: Covariate Comparison for Male Subjects 

 DBP SBP 
 Slope (SE) 95% CI p-value Slope (SE) 95% CI p-value 
Relative Age       
Univariate -0.240 (0.406) (-1.036, 0.556) 0.5544 0.931 (0.388) (0.170, 1.692) 0.0165
Multivariate -0.573 (0.388) (-1.334, 0.189) 0.1401 0.794 (0.374) (0.059, 1.528) 0.0342
Birth Weight  
Univariate -0.302 (1.268) (-2.827, 2.224) 0.8127 -1.186 (1.128) (-3.428, 1.055) 0.2958
Multivariate -0.366 (1.235) (-2.825, 2.093) 0.7677 -1.314 (1.161) (-3.623, 0.995) 0.2610

 

 

 For the female participants, the estimated values for both the variance-covariance 

G matrix (Table 13) and the correlation G matrix (Table 10Table 14) have been 

combined for comparison purposes in Table 21, for both the univariate models and the 

multivariate models. When comparing the results from the independent setting to the 

results from the multivariate setting there are several points of interest. The -2 log-

likelihood value corresponding to the two univariate models (fit as a joint model with 

appropriate covariance terMetS equal to zero) was equal to 14396.4. The -2 log-

likelihood value for the multivariate model was 14297.4. A likelihood ratio test indicated 

that the multivariate model provided a significantly better fit than the two univariate 

models ( 2 99χ = , df=4, p-value <0.0001). With regards to Akaike’s information criterion 
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(AIC) the multivariate model (AIC = 16962.4) is also a better fit than the univariate 

model (AIC = 17016.1) (recall, a smaller value indicates a better fit).  Notice how the 

multivariate model seems to decrease the variability in the random effects. Taking into 

account the SE’s for the estimates of variance and covariance the multivariate model, in 

general, allows for more accurate prediction, though just slightly. 
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Table 21: REML Estimates for the Covariance and Correlation Parameters in the 
Univariate and Multivariate Models for the Female Participants  

 

 Covariance Estimates Correlation Estimates 
 Univariate Multivariate Univariate Multivariate 
-2 Res ll 14396.4 14297.4 14396.4 14297.4
AIC 14412.4 14321.4 14412.4 14321.4
   

2
1a

σ  138.910 (31.920) 139.820 (31.367) 1.000 1.000

1 2a aσ  - 142.500 (28.260) - 0.936
2
2aσ  153.230 (33.032) 165.830 (34.286) 1.000 1.000

1 1a bσ  -7.605 (2.124) -7.453 (2.058) -0.886 -0.876

2 1a bσ  - -7.776 (1.832) - -0.839
2
1b

σ  0.530 (0.154) 0.518 (0.147) 1.000 1.000

1 2a bσ  - -9.157 (2.063) - -0.857

2 2a bσ  -9.626 (2.348) -10.513 (2.443) -0.899 -0.903

1 2b bσ  - 0.603 (0.139) - 0.9279

2
2bσ  0.747 (0.180) 0.817 (0.188) 1.000 1.000

 
2
1σ  47.956 (2.325) 47.645 (2.296) 47.956 (2.325) 47.645 (2.296)
2
2σ  44.803 (2.161) 44.407 (2.124) 44.803 (2.161) 44.407 (2.124)

(-2 Res ll = log-likelihood, AIC = Akaike’s information criterion.) 
 

 

 Comparing the fixed effects for the univariate and multivariate mixed-models for 

the female participants some interesting things may be considered. First, and foremost, 
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there is the question of whether the different models reached the same final conclusion. 

Recall, that for the univariate model (Table 12), significant differences were found 

between the two METS groups at ages seven through fifteen, for DBP, and eight through 

sixteen, for SBP. Compare this to the multivariate model (Table 16), where significant 

differences were found between the two METS groups at ages seven through fifteen, for 

DBP, and nine through seventeen, for SBP. Essentially the same conclusion was drawn 

for both models. Moreover, both the univariate and multivariate models concluded 

similarly that no significant differences were found for SBP when using a more 

conservative Bonferroni correction, while for DBP there were significant differences at 

ages nine through fourteen, and ages nine through thirteen, respectively. 

 When comparing the two models’ LS means differences (i.e. comparing Table 12 

and Table 16), what was even more telling was the precision of these differences. For 

each age, not only were the estimates for the differences slightly smaller for the 

multivariate model, the SE’s were also slightly smaller, when compared to the univariate 

model. The SE’s were further evidence that, when applicable, fitting a joint mixed-effects 

model was a better method.  

 Another item to touch upon was how the covariates compare between the two 

types of models. Recall, from section 3.5.3, that both the univariate and multivariate 

models did not find significant relationships between either covariate, relative age and 

birth weight, and either DBP or SBP. Both models drew the same conclusions with 
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regards to both covariates being related to a nominal increase in SBP and DBP, see Table 

22, with the multivariate model, in general, having more precise estimates, as shown by 

smaller SE’s and tighter CI’s. 

 

Table 22: Covariate Comparison for Female Subjects 

 DBP SBP 
 Slope (SE) 95% CI p-value Slope (SE) 95% CI p-value 
Relative Age       
Univariate 0.462 (0.365) (-0.255, 1.179) 0.2065 0.623 (0.358) (-0.079, 1.324) 0.0821
Multivariate 0.024 (0.344) (-0.651, 0.699) 0.9440 0.611 (0.338) (-0.052, 1.274) 0.0708
Birth Weight  
Univariate 1.679 (1.253) (-0.818, 4.175) 0.1843 0.664 (1.222) (-1.770, 3.098) 0.5885
Multivariate 1.511 (1.287) (-1.054, 4.075) 0.2442 0.814 (1.256) (-1.687, 3.315) 0.5189
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4 Conclusions and Future Work 

4.1. Overview of Work 

In this thesis, two methods were considered for fitting two response variables measured 

longitudinally, a univariate mixed-effects model and a multivariate mixed-effects model. 

Jointly modeling multiple response variables, rather than modeling them independently 

incorporates additional information into the model that may increase estimation and 

prediction accuracy. An exploration into the potential gain by the multivariate model was 

motivated by a desire to more accurately indentify when in childhood individuals start to 

become at risk for the metabolic syndrome, which they may develop later in adulthood. 

In Chapter 1, a discussion of the methodology available in the literature for modeling 

both univariate and multivariate longitudinal data was discussed in some detail. Also in 

Chapter 1, the metabolic syndrome was introduced and defined along with the specific 

aiMetS of the analysis. In Chapter 2 the methodology, for both the univariate mixed-

effects model and the multivariate mixed-effects model was discussed. Estimation of the 

fixed and random effects was described, along with formal definitions of the association 

in the evolution (AOE) of the two response and the evolution in the associations (EOA). 

 In Chapter 3 the results of the analysis of the Fels Longitudinal Study data was 

presented. Specifically, longitudinal trends in the measures of DBP and SBP during 

childhood were modeled using univariate and multivariate approaches, and compared 
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between those who went on to develop the metabolic syndrome in adulthood and those 

who did not. Here, not only were both models presented for male and female subjects, but 

the two models were compared (i.e. the models fit for the males subjects were compared 

against each other, and the models fit for the female subjects were compared against each 

other). An emphasis placed on what was gained by a multivariate mixed-model. Gains in 

the ability for the multivariate model to more accurately estimate both the fixed and 

random effects were described. In addition, the AOE and the EOA between DBP and 

SBP were estimated for both male and female participants. In fact, there was no evidence 

in the literature of estimates for the EOA and the AOE of DBP and SBP for children ages 

two through eighteen.  

 It is common practice for researchers to model several outcomes involved in a 

disease process independently. The results of this analysis indicated that there is 

additional information that can be gained with a multivariate model of the responses that 

are interrelated. It is comforting for researchers to know that the same questions 

addressed by the univariate model could be addressed with the multivariate model. 

However, the multivariate model is able to address these same questions with more 

accuracy (smaller standard errors) while also addressing additional questions that may be 

of great interest to the researcher, such as the AOE and the EOA of the responses. 

Furthermore, researchers are able to use the same software methods such as PROC 

MIXED in SAS for fitting multivariate longitudinal data as they currently use for fitting 
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univariate longitudinal data. Other reasons researchers may avoid jointly modeling 

response measures is that they may be of different types or collected at varying time 

points. For example, in HIV patients, one response may be a time-to-event (death) 

measure and another may be a continuous measure of CD4 counts. In fact, responses of 

different types are able to be jointly modeled under the framework of generalized mixed-

effects models and fit using PROC GLIMMIX in SAS. Furthermore, the mixed-effects 

model is able to handle missing data relatively well. 

 

4.2. Limitations 

 While there are several attractions to the multivariate model, there are several 

limitations that researchers should be aware of. For one, an issue of dimensionality is 

always present. Depending on the way the variance-covariance structure for the random-

effects is defined, increasing the number of response variables can very quickly increase 

the number of parameters that the model must estimate. This issue is typically side-

stepped with ease using modern computing methods for a multivariate model in which 

there are only two or three response variables. However, with increasing response 

variables, there is an exponential increase in the amount of computing power necessary to 

produce estimates. One such method when dealing with more than three response 

variables is a pair-wise approach discussed by Verbeke, et al. (2001). Other concerns 

when using a multivariate mixed-effects model include the assumptions made on the 
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correlation structure and the variance-covariance structure. For example, relaxing the 

conditional independence assumption by allowing correlated errors may cause a 

discrepancy due to the inappropriate modeling of the covariance structure. It is always 

important to understand what constraints and requirements are being made regarding the 

variance-covariance structure.  
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6 Appendices 

 

6.1. Details for Data Processing 

Creating the data sets (CHILD), (ADULT), and (FINAL) was done using SAS v. 9.2. The 

code associated with this process is shown below. 

 

Code for Data Processing 

/* READING IN DATA */ 
;/********************************************************************* 
*********************************************************************** 
 Import Data and extract necessary variables 
*********************************************************************** 
***********************************************************************
/; 
libname library "c:\AATHESIS\format"; 
libname LibForm "C:\Documents and Settings\jmthorpe\Desktop\THESIS 
WORK\Fels"; 
options  fmtsearch=(LibForm); 
 
Data Libform.test; set Libform.Vcu0608; 
run; 
 
Data LibForm.Subset; set Libform.Vcu0608; 
 keep  ptno   /*PATIENT ID NUMBER*/  
   ANsafhand  /*FELS HAND SKELETAL AGE*/ 
   AGE     /*PATIENT AGE*/ 
   SEX   /*PATIENT SEX*/ 
   ANbpd5   /*DIASTOLIC B.P -5th (mmhg)*/ 
   ANbpsys    /*SYSTOLIC B.P. (mmhg)*/ 
   BChdl    /*ALPHA LIPOPROTEIN (C-HDL)*/ 
   BCsglucose   /*SERUM GLUCOSE (mg/dl)*/ 
   BCtrigly  /*TRIGLYCERIDES*/ 
   ANcrabdomili /*ABOMINAL-iliac (cm)*/ 
   ANcrabdomumb /*ADOMINAL-umbilicus (cm)*/  
   ANz_stature  /*Standarized Z-score for Height*/  
   ANstature   /*Height (cm)*/ 
   ANweight;  /*Weight (kg)*/  
    
run; 
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;/********************************************************************* 
*********************************************************************** 
Creating ADULT data set from SUBSET, flag "high" measures 
create METS variables for each observation 
*********************************************************************** 
*********************************************************************/; 
Data ADULTa; set Libform.Subset; 
 
 /*select only adult obs between 30-75 years*/ 
 if 30 <= age <= 55;         
 /* Set "High" Trigly */ 
 if BCtrigly >= 150 then Htrigly = 1;    
  if . < BCtrigly < 150 then Htrigly = 0;  
 /* Set "Low" hdl measure, MEN */ 
 if SEX = 1 && . < BChdl < 40 then Lhdl = 1;   
  if sex = 1 and BChdl >= 40 then Lhdl = 0;   
 /* Set "Low" hdl measure, WOMEN */ 
 if SEX = 2 && . < BChdl < 50 then Lhdl = 1;  
  if sex = 2 && BChdl >= 50 then Lhdl = 0;    
   
 /* Set "High" BPD measure */ 
 if ANbpd5 >= 85 then Hbpd5 = 1;      
  if . < ANbpd5 < 85 then Hbpd5 = 0;  
 /* Set "High" BPS measure */ 
 if ANbpsys >= 130 then Hbpsys = 1;      
  if . < ANbpsys < 130 then Hbpsys = 0;    
  
 /* Set single "High" BP measure */ 
 if Hbpd5 = 1 or Hbpsys = 1 then Hbp = 1;    
  if Hbpd5 = 0 && Hbpsys = 0 then Hbp = 0;  
   /* Set "High" glucose measure */ 
 if BCsglucose >= 100 then Hglucose = 1;    
  if . < BCsglucose < 100 then Hglucose = 0; 
 /* Set Waiste measurements to one variable */ 
 if ANcrabdomili = . then wc = ANcrabdomumb; 
  else wc = ANcrabdomili;  
 /* Set "High" waiste measure, MEN */ 
 if SEX = 1 && wc >= 102 then Hwc = 1; 
  if sex = 1 && . < wc < 102 then Hwc = 0;    
  
 /* Set "High" waiste measure, WOMEN */ 
 if SEX = 2 && wc >= 88 then Hwc = 1;     
  if sex = 2 && . < wc < 88 then Hwc = 0;  
 
/*Two VERY IMPORTANT variables to create are number of RF missing*/  
/*(nmiss) and the sum of the RFs (numRF) These will be used to*/ 
/*create all of the MS variables*/ 
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if sum(Hbp,Lhdl,Hglucose,Htrigly,Hwc)>0  
  then numRF=sum(Hbp,Lhdl,Hglucose,Htrigly,Hwc);  
 nmiss = nmiss(Hbp,Lhdl,Hglucose,Htrigly,Hwc); 
 

/*Exaclty no, one, two, three, four, or five RFs */ 
 XnoRF=.; XoneRF=.; XtwoRF=.;  
 XthreeRF=.; XfourRF=.; XfiveRF=.;   
 /*At least one, two, three, four, or five RFs */ 
 ALoneRF=.; ALtwoRF=.; ALthreeRF=.;  
 ALfourRF=.; ALfiveRF=.;  
 
 if nmiss = 4 then do; 
  if numRF = . then do; XfiveRF = 0;  
          ALfiveRF = 0; end; 
  if numRF = 1 then do;  XnoRF = 0;  
      ALoneRF = 1; end;  

end; 
 
 if nmiss = 3 then do; 
  if numRF = . then do;  XfiveRF = 0; XfourRF = 0;  
      ALfourRF = 0; ALfiveRF = 0; end; 
  if numRF = 1 then do;  XnoRF = 0; XfiveRF = 0;  
      ALoneRF = 1; ALfiveRF = 0; end;  
  if numRF = 2 then do;  XnoRF = 0; XoneRF = 0;  
      ALoneRF = 1; ALtwoRF = 1; end;  
  end; 
 
 if nmiss = 2 then do; 
  if numRF = . then do; XfiveRF = 0; XfourRF = 0;  
      XthreeRF = 0; ALthreeRF = 0;  
      ALfourRF = 0; ALfiveRF = 0; end; 
  if numRF = 1 then do;  XnoRF = 0; XfiveRF = 0;  
      XfourRF = 0; ALoneRF = 1;  
      ALfourRF = 0; ALfiveRF = 0; end;  
  if numRF = 2 then do;  XnoRF = 0; XoneRF = 0;  
      XfiveRF = 0; ALoneRF = 1;  
      ALtwoRF = 1; ALfiveRF = 0; end;  
  if numRF = 3 then do;  XnoRF = 0; XoneRF = 0;  
      XtwoRF = 0; ALoneRF = 1;  
      ALtwoRF = 1; ALthreeRF = 1; end;  
  end;   
 if nmiss = 1 then do; 
  if numRF = . then do;  XfiveRF = 0; XfourRF = 0;  
      XthreeRF = 0; XtwoRF = 0;  
      ALtwoRF = 0; ALthreeRF = 0;  
      ALfourRF = 0; ALfiveRF = 0; end; 
  if numRF = 1 then do;  XnoRF = 0; XfiveRF = 0;  
      XfourRF = 0; XthreeRF = 0;  
      ALoneRF = 1; ALthree = 0;  
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      ALfourRF = 0; ALfiveRF = 0; end;  
  if numRF = 2 then do;  XnoRF = 0; XoneRF = 0;  
      XfiveRF = 0; XfourRF = 0;  
      ALoneRF = 1; ALtwoRF = 1;  
      ALfourRF = 0; ALfiveRF = 0; end;  
  if numRF = 3 then do;  XnoRF = 0; XoneRF = 0;  
      XtwoRF = 0; XfiveRF = 0;  
      ALoneRF = 1; ALtwoRF = 1;  
      ALthreeRF = 1; ALfiveRF = 0; end;  
  if numRF = 4 then do;  XnoRF = 0; XoneRF = 0;  
      XtwoRF = 0; XthreeRF = 0;  
      ALoneRF = 1; ALtwoRF = 1;  
      ALthreeRF = 1; ALfourRF = 1; end;  
  end;  
 
 if nmiss = 0 then do; 
  if numRF = . then do; XfiveRF = 0; XfourRF = 0;  
      XthreeRF = 0; XtwoRF = 0;  
      XoneRF = 0; XnoRF = 1;  
       ALoneRF = 0; ALtwoRF = 0;  
      ALthreeRF = 0; ALfourRF = 0;  
      ALfiveRF = 0; end; 
  if numRF = 1 then do;  XnoRF = 0; XfiveRF = 0;  
      XfourRF = 0; XthreeRF = 0;  
      XtwoRF = 0; XoneRF = 1;  
        ALoneRF = 1; ALtwoRF = 0;  
      ALthreeRF = 0; ALfourRF = 0;  
      ALfiveRF = 0; end;  
  if numRF = 2 then do;  XnoRF = 0; XoneRF = 0;  
      XfiveRF = 0; XfourRF = 0;  
      XthreeRF = 0; XtwoRF = 1;  
        ALoneRF = 1; ALtwoRF = 1;  
      ALthreeRF = 0; ALfourRF = 0;  
      ALfiveRF = 0; end;  
  if numRF = 3 then do;  XnoRF = 0; XoneRF = 0;  
      XtwoRF = 0; XfiveRF = 0;  
      XfourRF = 0; XthreeRF = 1;  
        ALoneRF = 1; ALtwoRF = 1;  
      ALthreeRF = 1; ALfourRF = 0;  
      ALfiveRF = 0; end;  
  if numRF = 4 then do;  XnoRF = 0; XoneRF = 0;  
      XtwoRF = 0; XthreeRF = 0;  
      XfiveRF = 0; XfourRF = 1;  
        ALoneRF = 1; ALtwoRF = 1;  
      ALthreeRF = 1; ALfourRF = 1;  
      ALfiveRF = 0; end;  
  if numRF = 5 then do;  XnoRF = 0; XoneRF = 0;  
      XtwoRF = 0; XthreeRF = 0;  
      XfourRF = 0; XfiveRF = 1;   



www.manaraa.com

    

100 

 

        ALoneRF = 1; ALtwoRF = 1;  
      ALthreeRF = 1; ALfourRF = 1;  
      ALfiveRF = 1; end;  
   end; 
 
 keep ptno ANsafhand AGE SEX Hbp Lhdl Hglucose Htrigly  
  Hwc ANstature ANweight numRF nmiss XnoRF XoneRF  
  XtwoRF XthreeRF XfourRF XfiveRF ALoneRF ALtwoRF  
  ALthreeRF ALfourRF ALfiveRF; 
 
proc freq data = Adulta; 
 tables nmiss numRF numRF*nmiss  
     XnoRF XoneRF XtwoRF XthreeRF XfourRF XfiveRF 
      ALoneRF ALtwoRF ALthreeRF ALfourRF ALfiveRF; 
run; 
/********************************************************************** 
*********************************************************************** 
 Creating MS variables for each subject 
*********************************************************************** 
*********************************************************************/; 
proc sort data = adulta; by ptno descending ALoneRF age; run; 
data adult1; set adulta; 
 by ptno; 
 if first.ptno = 1; 
 if ALoneRF = 1 then AgeMS1diag = age; 
 keep ptno AgeMS1diag ALoneRF; 
run; 
 
proc sort data = adulta; by ptno descending ALtwoRF age; run; 
data adult2; set adulta; 
 by ptno; 
 if first.ptno = 1; 
 if ALtwoRF = 1 then AgeMS2diag = age; 
 keep ptno AgeMS2diag ALtwoRF; 
run; 
 
proc sort data = adulta; by ptno descending ALthreeRF age; run; 
data adult3; set adulta; 
 by ptno; 
 if first.ptno = 1; 
 if ALthreeRF = 1 then AgeMS3diag = age; 
 keep ptno AgeMS3diag ALthreeRF; 
run; 
 
proc sort data = adulta; by ptno descending ALfourRF age; run; 
data adult4; set adulta; 
 by ptno; 
 if first.ptno = 1; 
 if ALfourRF = 1 then AgeMS4diag = age; 
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 keep ptno AgeMS4diag ALfourRF; 
run; 
 
proc sort data = adulta; by ptno descending ALfiveRF age; run; 
data adult5; set adulta; 
 by ptno; 
 if first.ptno = 1; 
 if ALfiveRF = 1 then AgeMS5diag = age; 
 keep ptno AgeMS5diag ALfiveRF; 
run; 
 
data adultb; 
 merge adult1 adult2 adult3 adult4 adult5; 
 by ptno; 
run; 
 
proc sort data = adultb; by ptno; run; 
;/********************************************************************* 
*********************************************************************** 
 Creating CHILD data set from SUBSET  
*********************************************************************** 
*********************************************************************/; 
Data Childa; set Libform.Subset; 
 keep ptno ANweight; 
 if Age <.013; 
 by ptno age; 
 if first.ptno = 1; 
 rename ANweight = birthWT; 
run; 
proc means data = Childa; run; 
 
proc sort data = Childa; by ptno; run; 
Data Childb; set Libform.Subset; 
 if 2 <= age  < 19; 
 if ANcrabdomili = . then WC = ANcrabdomumb; 
  else WC = ANcrabdomili;  
 rename ANbpd5 = DBP;  
 rename ANbpsys = SBP; 
 rename ANsafhand = SKELETALage; 
 rename BCHDL = HDL; 
 rename BCsglucose = Glucose; 
 rename BCtrigly = Trig; 
 rename ANstature = ht; 
 rename ANweight = wt; 
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if SEX=1 then SBPmu=102.19768+(1.82416*(AGE-10)**1)+(0.12776*(AGE-
10)**2)+(0.00249*(AGE-10)**3)-(0.00135*(AGE-
10)**4)+(2.73157*(ANz_stature)**1)-(0.19618*(ANz_stature)**2)- 
(0.04659*(ANz_stature)**3)+(0.00947*(ANz_stature)**4); 
 
if SEX=2 then SBPmu=102.01027+(1.94397*(AGE-10)**1)+(0.00598*(AGE-
10)**2)-(0.00789*(AGE-10)**3)-(0.00059*(AGE-10)**4) 
+(2.03526*(ANz_stature)**1)+(0.02534*(ANz_stature)**2)- 
(0.01884*(ANz_stature)**3)+(0.00121*(ANz_stature)**4);  
  
if SEX=1 then DBPmu=61.01217+(0.68314*(AGE-10)**1)-(0.09835*(AGE-
10)**2)+(0.01711*(AGE-10)**3)-(0.00045*(AGE-10)**4) 
+(1.46993*(ANz_stature)**1)-(0.07849*(ANz_stature)**2)- 
(0.03144*(ANz_stature)**3)+(0.00967*(ANz_stature)**4); 
 
if SEX=2 then DBPmu=60.50510+(1.01301*(AGE-10)**1)+(0.01157*(AGE-
10)**2)+(0.00424*(AGE-10)**3)-(0.00137*(AGE-10)**4) 
+(1.16641*(ANz_stature)**1)+(0.12795*(ANz_stature)**2)- 
(0.03869*(ANz_stature)**3)-(0.00079*(ANz_stature)**4); 
 
 ZSBP=(ANbpsys-SBPmu)/10.7128;   

ZDBP=(ANbpd5-DBPmu)/10.7128; 
 PercentileSBP=probnorm(ZSBP)*100;
 PercentileDBP=probnorm(ZDBP)*100; 
 
 drop ANcrabdomili ANcrabdomumb ANz_stature SBPmu DBPmu ZSBP ZDBP; 
 
run; 
proc sort data = Childb; by ptno age; 
  
data Childc;  
 merge Childb (in=a) Childa (in=b);  
 by ptno;  
 if a;  
run; 
 
proc means data = Childc n mean std median min max; 
 *where DBP > .; 
 *where SBP > .; 
 *where HDL > .; 
 *where Glucose > .; 
 *where Trig > .; 
 *where ANcrabdomili >.; 
 *where ANcrabdomumb >.; 
 *where WC >.; 
 *where SkeletalAge > .; 
 *var age SkeletalAge; 
run; 
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;/********************************************************************* 
*********************************************************************** 
 Combine CHILD and ADULT data sets  
*********************************************************************** 
*********************************************************************/; 
proc sort data = Childc; by ptno age; run; 
proc sort data = Adultb; by ptno; run; 
 
data Libform.Childc; 
 set Childc; 
 by ptno; 
 FlagSub = first.ptno; 
run; 
 
proc freq data = Childc; 
 tables ptno; 
run; 
 
data Final; 
 merge Childc (in=a) Adultb (in=b); 
 by ptno; 
 if a and b; 
 FlagSub = first.ptno; 
 if ALoneRF = 0 then MSgroup = "None"; 
 if ALthreeRF = 1 then MSgroup = "3+"; 
run; 
data LibForm.Final;  
 set Final;  
 if DBP ne . && SBP ne . && WC ne . then elegible = 1; 
run; 
proc means data = Libform.Final n mean std median min max; 
where FlagSub = 1; 
var ptno sex birthWT; 
run; 
 
 
proc freq data = Libform.Final; 
 tables Flagsub; 
run; 
 
/*There are 528 subjects (from freq above)*/ 
ods html file = 'C:\AATHESIS\excel.xls'; 
proc freq data = Libform.Final; 
 where FlagSub = 1; 
 tables MSgroup ALoneRF ALtwoRF ALthreeRF ALfourRF ALfiveRF SEX; 
run; 
ods html close; 
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/* Percentage of Male/Female in the None MSgroup */ 
proc freq data=Libform.Final; 
 where MSgroup = "None" && FlagSub=1; 
 tables sex; 
run; 
 
/* Percentage of Male/Female in the 3+ MSgroup */ 
proc freq data=Libform.Final; 
 where MSgroup = "3+" && FlagSub=1; 
 tables sex; 
run; 
 
/* Age at diagnosis */ 
proc means data=Libform.Final n mean std; 
 where MSgroup = "3+" && FlagSub=1; 
 var AgeMS3diag AgeMS4diag AgeMS5diag; 
run; 
 
proc print data = Final; run; 
/*Freq above gives "prevelance" for each MS variable*/ 
 
/* Setting SBP and DBP to an integer measure */ 
data Libform.Final; 
 set Libform.Final; 
 SBP = int(SBP); 
 DBP = int(DBP); 
run; 
 
data Libform.FinalStacked; 
 set Final; 
 value = SBP; resp = "SBP"; output; 
 value = DBP; resp = "DBP"; output; 
keep ptno Age Sex MSGroup birthwt Skeletalage value resp ht wt FlagSub; 
run; 
 
proc freq data=Libform.FinalStacked; 
 where MSgroup = "3+" && FlagSub=1; 
 tables sex; 
run; 
proc sort data = Libform.FinalStacked; 
 by resp; 
run; 
 

6.2. Details for Mixed-Effects Modeling 

Both the univariate and multivariate mixed-effects models were done using PROC 

MIXED with using SAS v. 9.2. The code associated with this process is shown below. 
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Code for the Mixed-Effects Models 

;/********************************************************************* 
*********************************************************************** 
 Univariate/Multivariate Mixed-Model Procedure for Male Subjects 
*********************************************************************** 
*********************************************************************/; 
proc mixed data = Libform.FinalStacked2 covtest; 
 Where sex = 1 ;*Males; 
 class resp ptno MSGroup; 
 model value =  resp relage birthwt resp*relage resp*birthwt 
      age MSGroup age*MSGroup resp*age  
     resp*MSGroup resp*age*MSGroup 
      age*age age*age*MSgroup age*age*resp  
     age*age*resp*MSgroup age*age*age  
     age*age*age*MSgroup age*age*age*resp  
     age*age*age*resp*MSgroup age*age*age*age  

age*age*age*age*MSgroup 
age*age*age*age*resp  

     age*age*age*age*resp*MSgroup 
 
    /s ddfm=kr residual; 
 
 *G-Matrix; 
 ***Univariate*** 
 *random int age/ sub=ptno type = un group = resp g gcorr;  
 
 ***Multivariate***; 
 random resp resp*age / sub=ptno type=un g gcorr;  
 
 *R-Matrix; 
 *Uncorrelated errors; 
 repeated /type=VC group=resp subject=ptno; 
  
 *Correlated errors 
 *repeated resp /type=un subject=ptno; 
 
 *DBP Fixed Effect Tests; 
 estimate "DBP: relage" relage 1 resp*relage 1 0; 
 estimate "DBP: birthwt" birthwt 1 resp*birthwt 1 0; 
 estimate "DBP: lin age" age 1 age*MSgroup 0.5 0.5  
      age*resp 1 0  
      age*resp*MSgroup 0.5 0.5 0 0;  
 estimate "DBP: MS vs noMS" MSgroup 1 -1  
      resp*MSgroup 1 -1 0 0; 
 estimate "DBP: MS vs noMS lin age"  
      age*MSgroup 1 -1  
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      age*resp*MSgroup 1 -1 0 0; 
 estimate "DBP: quad age"  age*age 1 age*age*MSgroup 0.5 0.5  
      age*age*resp 1 0  
      age*age*resp*MSgroup 0.5 0.5 0 0; 
 estimate "DBP: MS vs noMS quad age" age*age*MSgroup 1 -1  
      age*age*resp*MSgroup 1 -1 0 0; 
 estimate "DBP: cub age"  age*age*age 1  
      age*age*age*MSgroup 0.5 0.5  
      age*age*age*resp 1 0  
      age*age*age*resp*MSgroup 0.5 0.5 0 0; 
 estimate "DBP: MS vs noMS cub age" age*age*age*MSgroup 1 -1  
      age*age*age*resp*MSgroup 1 -1 0 0; 
 estimate "DBP: quar age" age*age*age*age 1  
      age*age*age*age*MSgroup 0.5 0.5  
      age*age*age*age*resp 1 0  
        age*age*age*age*resp*MSgroup 0.5 0.5 0 0 
     /singular=1; 
 estimate "DBP: MS vs noMS quar age" age*age*age*age*MSgroup 1 -1  
     age*age*age*age*resp*MSgroup 1 -1 0 0 
     /singular=1; 
 
 *SBP Fixed Effect Tests; 
 estimate "SBP: relage" relage 1 resp*relage 0 1; 
 estimate "SBP: birthwt" birthwt 1 resp*birthwt 0 1; 
 estimate "SBP: lin age" age 1 age*MSgroup 0.5 0.5  
       age*resp 0 1  
       age*resp*MSgroup 0 0 0.5 0.5;  
 estimate "SBP: MS vs noMS" MSgroup 1 -1  
      resp*MSgroup 0 0 1 -1; 
 estimate "SBP: MS vs noMS lin age" age*MSgroup 1 -1  
       age*resp*MSgroup 0 0 1 -1; 
 estimate "SBP: quad age" age*age 1 age*age*MSgroup 0.5 0.5  
      age*age*resp 0 1  
      age*age*resp*MSgroup 0 0 0.5 0.5; 
 estimate "SBP: MS vs noMS quad age" age*age*MSgroup 1 -1  
      age*age*resp*MSgroup 0 0 1 -1; 
 estimate "SBP: cub age" age*age*age 1  
     age*age*age*MSgroup 0.5 0.5  
     age*age*age*resp 0 1  
     age*age*age*resp*MSgroup 0 0 0.5 0.5; 
 estimate "SBP: MS vs noMS cub age" age*age*age*MSgroup 1 -1  
      age*age*age*resp*MSgroup 0 0 1 -1; 
 estimate "SBP: quar age" age*age*age*age 1  
      age*age*age*age*MSgroup 0.5 0.5  
      age*age*age*age*resp 0 1  
      age*age*age*age*resp*MSgroup 0 0 0.5 0.5 
     /singular=1; 
 estimate "SBP: MS vs noMS quar age" age*age*age*age*MSgroup 1 -1  
      age*age*age*age*resp*MSgroup 0 0 1 -1 
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     /singular=1; 
 
 *Differences in BP between MS group at each age;  
 lsmeans resp*MSgroup / diff cl at age=2 singular = 1;  
 lsmeans resp*MSgroup / diff cl at age=3 singular = 1; 
 lsmeans resp*MSgroup / diff cl at age=4 singular = 1;  
 lsmeans resp*MSgroup / diff cl at age=5 singular = 1; 
 lsmeans resp*MSgroup / diff cl at age=6 singular = 1;  
 lsmeans resp*MSgroup / diff cl at age=7 singular = 1; 
 lsmeans resp*MSgroup / diff cl at age=8 singular = 1;  
 lsmeans resp*MSgroup / diff cl at age=9 singular = 1; 
 lsmeans resp*MSgroup / diff cl at age=10 singular = 1;  
 lsmeans resp*MSgroup / diff cl at age=11 singular = 1; 
 lsmeans resp*MSgroup / diff cl at age=12 singular = 1;  
 lsmeans resp*MSgroup / diff cl at age=13 singular = 1; 
 lsmeans resp*MSgroup / diff cl at age=14 singular = 1;  
 lsmeans resp*MSgroup / diff cl at age=15 singular = 1; 
 lsmeans resp*MSgroup / diff cl at age=16 singular = 1;  
 lsmeans resp*MSgroup / diff cl at age=17 singular = 1; 
 lsmeans resp*MSgroup / diff cl at age=18 singular = 1; 
 
 *Comparisons between DBP and SBP (not described in thesis); 
 estimate "DBP vs SBP: relage" resp*relage 1 -1; 
 estimate "DBP vs SBP: birthwt" resp*birthwt 1 -1; 
 
run; 
 
;/********************************************************************* 
*********************************************************************** 
 Univariate Mixed Model Procedure for Female Subjects 
*********************************************************************** 
*********************************************************************/; 
proc mixed data = Libform.FinalStacked2 covtest; 
 Where sex = 1 ;*Females; 
 class resp ptno MSGroup; 
 model value = resp relage birthwt resp*relage  
     resp*birthwt 
      age MSGroup age*MSGroup resp*age  
     resp*MSGroup resp*age*MSGroup 
      age*age age*age*MSgroup age*age*resp  
     age*age*resp*MSgroup 
 
    /s ddfm=kr residual; 
 
 *G-Matrix; 
 ***Univariate*** 
 *random int age/ sub=ptno type = un group = resp g gcorr;  
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 ***Multivariate***; 
 random resp resp*age / sub=ptno type=un g gcorr;  
 
 *R-Matrix; 
 *Uncorrelated errors; 
 repeated /type=VC group=resp subject=ptno; 
  
 *Correlated errors 
 *repeated resp /type=un subject=ptno; 
 
 
 *DBP Fixed Effect Tests; 
 estimate "DBP: relage"  relage 1  
      resp*relage 1 0; 
 estimate "DBP: birthwt"  birthwt 1  
      resp*birthwt 1 0; 
 estimate "DBP: lin age"  age 1  
      age*MSgroup 0.5 0.5  
      age*resp 1 0  
      age*resp*MSgroup 0.5 0.5 0 0;  
 estimate "DBP: MS vs noMS"  MSgroup 1 -1  
      resp*MSgroup 1 -1 0 0; 
 estimate "DBP: MS vs noMS lin age"  
      age*MSgroup 1 -1  
      age*resp*MSgroup 1 -1 0 0; 
 estimate "DBP: quad age"  age*age 1  
      age*age*MSgroup 0.5 0.5  
      age*age*resp 1 0  
      age*age*resp*MSgroup 0.5 0.5 0 0; 
 estimate "DBP: MS vs noMS quad age"  
      age*age*MSgroup 1 -1  
      age*age*resp*MSgroup 1 -1 0 0; 
 
 *SBP Fixed Effect Tests; 
 estimate "SBP: relage"   relage 1  
      resp*relage 0 1; 
 estimate "SBP: birthwt"  birthwt 1  
      resp*birthwt 0 1; 
 estimate "SBP: lin age"  age 1  
      age*MSgroup 0.5 0.5  
      age*resp 0 1  
      age*resp*MSgroup 0 0 0.5 0.5;  
 estimate "SBP: MS vs noMS"  MSgroup 1 -1  
      resp*MSgroup 0 0 1 -1; 
 estimate "SBP: MS vs noMS lin age"  
      age*MSgroup 1 -1  
      age*resp*MSgroup 0 0 1 -1; 
 estimate "SBP: quad age"  age*age 1  
      age*age*MSgroup 0.5 0.5  
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      age*age*resp 0 1  
      age*age*resp*MSgroup 0 0 0.5 0.5; 
 estimate "SBP: MS vs noMS quad age"  
      age*age*MSgroup 1 -1  
      age*age*resp*MSgroup 0 0 1 -1; 
 
 *Differences in BP between MS group at each age;  
 lsmeans resp*MSgroup / diff cl at age=2 singular = 1;  
 lsmeans resp*MSgroup / diff cl at age=3 singular = 1; 
 lsmeans resp*MSgroup / diff cl at age=4 singular = 1;  
 lsmeans resp*MSgroup / diff cl at age=5 singular = 1; 
 lsmeans resp*MSgroup / diff cl at age=6 singular = 1;  
 lsmeans resp*MSgroup / diff cl at age=7 singular = 1; 
 lsmeans resp*MSgroup / diff cl at age=8 singular = 1;  
 lsmeans resp*MSgroup / diff cl at age=9 singular = 1; 
 lsmeans resp*MSgroup / diff cl at age=10 singular = 1;  
 lsmeans resp*MSgroup / diff cl at age=11 singular = 1; 
 lsmeans resp*MSgroup / diff cl at age=12 singular = 1;  
 lsmeans resp*MSgroup / diff cl at age=13 singular = 1; 
 lsmeans resp*MSgroup / diff cl at age=14 singular = 1;  
 lsmeans resp*MSgroup / diff cl at age=15 singular = 1; 
 lsmeans resp*MSgroup / diff cl at age=16 singular = 1;  
 lsmeans resp*MSgroup / diff cl at age=17 singular = 1; 
 lsmeans resp*MSgroup / diff cl at age=18 singular = 1; 
 
 *Comparisons between DBP and SBP (not described in thesis); 
 estimate "DBP vs SBP: relage" resp*relage 1 -1; 
 estimate "DBP vs SBP: birthwt" resp*birthwt 1 -1; 
 
run; 
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